期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进卷积网络的终端区4D航迹预测与冲突检测
1
作者 张飞桥 张亦驰 严皓 《科学技术与工程》 北大核心 2024年第5期2150-2157,共8页
随着不断扩大的旅客运输量和航线网络规模,采用飞行计划结合空中交通管制的空中管理办法已经不能与当前民航需求和空中交通流量相匹配,直接影响到航班正常率和运行安全。为解决这一问题,国际民航组织(International Civil Aviation Orga... 随着不断扩大的旅客运输量和航线网络规模,采用飞行计划结合空中交通管制的空中管理办法已经不能与当前民航需求和空中交通流量相匹配,直接影响到航班正常率和运行安全。为解决这一问题,国际民航组织(International Civil Aviation Organization,ICAO)提出了基于航迹运行(trajectory based operation,TBO)的下一代空中交通管理运行理念,中国民航也提出了智慧民航的建设方案和目标。其中4D航迹是TBO运行的核心组成部分,也是中国建设智慧民航的重要技术指标,其可以对航空器的运行进行精确地管理和控制。因此,提高4D航迹预测的准确性成为了目前急需解决的核心问题。面向航空器的飞行任务实施阶段,从4D航迹预测和冲突检测两个问题进行了研究。在航迹预测方面,采用了基于卷积神经网络-双向门控循环单元(convolutional neural networks-bidirectional gated recurrent unit,CNN-BiGRU)的模型对航迹进行高精度预测;在冲突检测方面,引入了航迹距离检测函数以检验预测模型生成的两条航迹是否存在冲突。通过使用某繁忙终端区真实广播自动相关监视(automatic dependent surveillance-broadcast,ADS-B)历史轨迹数据进行实验,并将该方法与同一数据集上的单一长短时记忆网络(long short-term memory,LSTM)模型和门控循环单元(gated recurrent unit,GRU)模型进行了比较。仿真实验表明,CNN-BiGRU模型的评价指标均优于对比模型,同时预测的两条航迹在未来800 s内不存在冲突。所提出的方法为空中交通管理提供了一种有效的手段,具有重要的应用价值。 展开更多
关键词 4D航迹预测 基于ads-b航迹数据 飞行冲突检测 CNN-BiGRU
下载PDF
基于CNN-LSTM-attention模型航迹预测研究 被引量:2
2
作者 孔建国 李亚彬 +2 位作者 张时雨 陈超 梁海军 《航空计算技术》 2023年第1期1-5,共5页
以航迹预测方法作为切入点,重庆-广州航路航空器记录的ADS-B数据作为研究内容,提出了一种融合注意力机制的长时序航迹预测方法(CNN-LSTM-attention)。研究运用一维卷积神经网络对航迹数据多维特征进行提取,并将经纬度、高度、速度、航... 以航迹预测方法作为切入点,重庆-广州航路航空器记录的ADS-B数据作为研究内容,提出了一种融合注意力机制的长时序航迹预测方法(CNN-LSTM-attention)。研究运用一维卷积神经网络对航迹数据多维特征进行提取,并将经纬度、高度、速度、航向等的多维特征向量构造成时序形式作为LSTM网络输入,通过赋予LSTM网络隐含层的权重占比并区别不同时序点隐藏层信息对未来航迹预测的影响程度来达到优化预测模型的作用。构建好的CNN-LSTM-attention模型采用Adam优化算法进行训练,LSTM和CNN-LSTM作为实验对比模型,将决定系数R^(2)作为模型评价标准来衡量航迹预测模型的准确性。实验结果表明加入注意力机制的神经网络预测模型CNN+LSTM+attention(卷积神经网络-长短期记忆网络-注意力机制)的方法相较于其他两种,其预测精确性更高。 展开更多
关键词 航迹预测 CNN-LSTM-attention模型 注意力机制 ads-b航迹数据 神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部