车内主动噪声控制中常使用的传统滤波-x最小均方(Filtered-x Least Mean Square,FxLMS)算法由于计算复杂度高,往往导致系统硬件算力不足,降噪效果不理想。文章提出一种基于改进局部次级通路建模方法的自适应陷波(Local-secondary-path F...车内主动噪声控制中常使用的传统滤波-x最小均方(Filtered-x Least Mean Square,FxLMS)算法由于计算复杂度高,往往导致系统硬件算力不足,降噪效果不理想。文章提出一种基于改进局部次级通路建模方法的自适应陷波(Local-secondary-path Filtered-x Least Mean Square,LFxLMS)算法及其相应的窄带主动噪声控制(LFxLMS-based Narrowband Active Noise Control,LFx-NANC)系统。所提出的改进局部次级通路建模方法具有更高的建模精度,且该系统相较于传统系统大大降低了计算复杂度。通过基于Matlab软件的仿真分析,验证了该系统对稳态及非稳态多谐波噪声的降噪性能。基于ADSP-21489控制器搭建车内双通道LFx-NANC系统,实现了在稳态工况下主驾位置处二、四、六阶降噪量分别达到34.67、21.41、10.29 dB(A);在加速工况下主驾位置处总声压级和二阶降噪量分别达到6.01 dB(A)和20.40 dB(A),同时在其他位置均有较好的降噪效果。文中提出的方法为主动噪声控制的工程应用提供了参考。展开更多
文摘车内主动噪声控制中常使用的传统滤波-x最小均方(Filtered-x Least Mean Square,FxLMS)算法由于计算复杂度高,往往导致系统硬件算力不足,降噪效果不理想。文章提出一种基于改进局部次级通路建模方法的自适应陷波(Local-secondary-path Filtered-x Least Mean Square,LFxLMS)算法及其相应的窄带主动噪声控制(LFxLMS-based Narrowband Active Noise Control,LFx-NANC)系统。所提出的改进局部次级通路建模方法具有更高的建模精度,且该系统相较于传统系统大大降低了计算复杂度。通过基于Matlab软件的仿真分析,验证了该系统对稳态及非稳态多谐波噪声的降噪性能。基于ADSP-21489控制器搭建车内双通道LFx-NANC系统,实现了在稳态工况下主驾位置处二、四、六阶降噪量分别达到34.67、21.41、10.29 dB(A);在加速工况下主驾位置处总声压级和二阶降噪量分别达到6.01 dB(A)和20.40 dB(A),同时在其他位置均有较好的降噪效果。文中提出的方法为主动噪声控制的工程应用提供了参考。