Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning the structure of Bayesian network (BN) based on metric scoring, is introduced as an e...Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning the structure of Bayesian network (BN) based on metric scoring, is introduced as an example that heavily relies on frequent counting. A fast calculation method for frequent counting enhanced with two cache layers is then presented for learning BN. The main contribution of our approach is to eliminate comparison operations for frequent counting by introducing a multi-radix number system calculation. Both mathematical analysis and empirical comparison between our method and state-of-the-art solution are conducted. The results show that our method is dominantly superior to state-of-the-art solution in solving the problem of learning BN.展开更多
This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed ...This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed 3-D tree models.To improve its representation accuracy,the WLOP algorithm is introduced to consolidate the point cloud.Its reconstruction accuracy is tested using a dataset of ten trees,and the one-sided Hausdorff distances between the input point clouds and the resulting 3-D models are measured.The experimental results show that the optimal projection modeling method has an average one-sided Hausdorff distance(mean)lower by 30.74%and 6.43%compared with AdTree and AdQSM methods,respectively.Furthermore,it has an average one-sided Hausdorff distance(RMS)lower by 29.95%and 12.28%compared with AdTree and AdQSM methods.Results show that the 3-D model generated fits closely to the input point cloud data and ensures a high geometrical accuracy.展开更多
基金supported by National Natural Science Foundation of China (No.60970055)
文摘Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning the structure of Bayesian network (BN) based on metric scoring, is introduced as an example that heavily relies on frequent counting. A fast calculation method for frequent counting enhanced with two cache layers is then presented for learning BN. The main contribution of our approach is to eliminate comparison operations for frequent counting by introducing a multi-radix number system calculation. Both mathematical analysis and empirical comparison between our method and state-of-the-art solution are conducted. The results show that our method is dominantly superior to state-of-the-art solution in solving the problem of learning BN.
基金supported in part by the National Natural Science Foundation of China(Nos.42271343,42177387)the Fund of State Key Laboratory of Remote Sensing Information and Image Analysis Technology of Beijing Research Institute of Uranium Geology under(No.6142A010403)
文摘This paper presents a method to reconstruct 3-D models of trees from terrestrial laser scan(TLS)point clouds.This method uses the weighted locally optimal projection(WLOP)and the AdTree method to reconstruct detailed 3-D tree models.To improve its representation accuracy,the WLOP algorithm is introduced to consolidate the point cloud.Its reconstruction accuracy is tested using a dataset of ten trees,and the one-sided Hausdorff distances between the input point clouds and the resulting 3-D models are measured.The experimental results show that the optimal projection modeling method has an average one-sided Hausdorff distance(mean)lower by 30.74%and 6.43%compared with AdTree and AdQSM methods,respectively.Furthermore,it has an average one-sided Hausdorff distance(RMS)lower by 29.95%and 12.28%compared with AdTree and AdQSM methods.Results show that the 3-D model generated fits closely to the input point cloud data and ensures a high geometrical accuracy.