期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Lorenz-63模型的状态与参数同时估计方法对比研究
1
作者 陈玮婧 黄春林 沈焕锋 《遥感技术与应用》 CSCD 北大核心 2015年第4期684-693,共10页
模型状态同化精度受多种方面因素的影响,针对状态同化中模型参数的不确定性问题,状态与参数同时估计为此提供了一种较好的解决方案,即在进行状态同化的过程中得到合理的参数估计值。在Lorenz-63模型的基础上构建状态与参数同时估计框架... 模型状态同化精度受多种方面因素的影响,针对状态同化中模型参数的不确定性问题,状态与参数同时估计为此提供了一种较好的解决方案,即在进行状态同化的过程中得到合理的参数估计值。在Lorenz-63模型的基础上构建状态与参数同时估计框架,比较分析增广集合卡尔曼滤波(AEnKF,Augmented Ensemble Kalman Filter)、双重集合卡尔曼滤波(DEnKF,Dual Ensemble Kalman Filter)和同时优化与同化方法(SODA,Simultaneous Optimization and Data Assimilation)在集合数、观测误差和观测数不同时的参数和状态估计结果差异,由此探讨3种方法的优劣及适用性。研究结果表明:3种方法都能较好地估计模型的状态和参数,AEnKF的误差在集合数不大于20时最大,随着集合数增加降低的速率最小;3种方法的RMSE值随观测误差的增大而增大,但算法间差异不大;观测数变为1时3种方法的结果都变差,其中AEnKF最明显。 展开更多
关键词 集合卡尔曼滤波(EnKF) Lorenz-63模型 数据同化 aenkf DEnKF SODA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部