In this paper, the representation theory for the arlene Lie algebra H4 associated to the Nappi-Witten Lie algebra H4 is studied. Polynomial representations of the affine Nappi-Witten Lie algebra H4 are given.
In this paper, we discuss the pairing problem of generators in four affine Lie algebra. That is, for any given imaginary root vector x∈g(A) , there exists y such that x and y generate a subalgebra cont...In this paper, we discuss the pairing problem of generators in four affine Lie algebra. That is, for any given imaginary root vector x∈g(A) , there exists y such that x and y generate a subalgebra containing g′(A).展开更多
In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine qua...In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it.展开更多
In this paper, we first give a 1-1 corresponds between torus C/Λ and cubic curve C in P_C^2. As complex manifold, they are isomorphic, therefore we can treat C/Λ as a variety and construction a vertex algebra sheaf ...In this paper, we first give a 1-1 corresponds between torus C/Λ and cubic curve C in P_C^2. As complex manifold, they are isomorphic, therefore we can treat C/Λ as a variety and construction a vertex algebra sheaf on it.展开更多
For any finite-dimensional semisimple Lie algebra g, a Z+-graded vertex algebra is construsted on the vacuum representation Vk(g[θ]of g[θ]),which is a one-dimentionM central extension of 8-invariant subspace on t...For any finite-dimensional semisimple Lie algebra g, a Z+-graded vertex algebra is construsted on the vacuum representation Vk(g[θ]of g[θ]),which is a one-dimentionM central extension of 8-invariant subspace on the loop algebra Lg=g C((t^1/p)).展开更多
In this work, we use the finiteness of the Mordell-weil group and the Riemann Roch spaces to give a geometric parametrization of the set of algebraic points of any given degree over the field of rational numbers Q on ...In this work, we use the finiteness of the Mordell-weil group and the Riemann Roch spaces to give a geometric parametrization of the set of algebraic points of any given degree over the field of rational numbers Q on curve C<sub>3 </sub>(11): y<sup>11</sup> = x<sup>3</sup> (x-1)<sup>3</sup>. This result is a special case of quotients of Fermat curves C<sub>r,s </sub>(p) : y<sup>p</sup> = x<sup>r</sup>(x-1)<sup>s</sup>, 1 ≤ r, s, r + s ≤ p-1 for p = 11 and r = s = 3. The results obtained extend the work of Gross and Rohrlich who determined the set of algebraic points on C<sub>1</sub>(11)(K) of degree at most 2 on Q.展开更多
In this paper, we consider an integral basis for affine vertex algebra Vk (sl2) when the level k is integral by a direct calculation, then use the similar way to analyze an integral basis for Virasoro vertex algebra V...In this paper, we consider an integral basis for affine vertex algebra Vk (sl2) when the level k is integral by a direct calculation, then use the similar way to analyze an integral basis for Virasoro vertex algebra Vvir (2k,0). Finally, we take the combination of affine algebras and Virasoro Lie algebras into consideration. By analogy with the construction of Lie algebras over Z using Chevalley bases, we utilize the Z-basis of Lav whose structure constants are integral to find an integral basis for the universal enveloping algebra of it.展开更多
The Nappi-Witten Lie algebra was first introduced by C. Nappi and E. Witten in the study of Wess-Zumino-Novikov-Witten (WZNW) models. They showed that the WZNW model (NW model) based on a central extension of the two-...The Nappi-Witten Lie algebra was first introduced by C. Nappi and E. Witten in the study of Wess-Zumino-Novikov-Witten (WZNW) models. They showed that the WZNW model (NW model) based on a central extension of the two-dimensional Euclidean group describes the homogeneous four-dimensional space-time corresponding to a gravitational plane wave. The associated Lie algebra is neither abelian nor semisimple. Recently K. Christodoulopoulou studied the irreducible Whittaker modules for finite- and infinite-dimensional Heisenberg algebras and for the Lie algebra obtained by adjoining a degree derivation to an infinite-dimensional Heisenberg algebra, and used these modules to construct a new class of modules for non-twisted affine algebras, which are called imaginary Whittaker modules. In this paper, imaginary Whittaker modules of the twisted affine Nappi-Witten Lie algebra are constructed based on Whittaker modules of Heisenberg algebras. It is proved that the imaginary Whittaker module with the center acting as a non-zero scalar is irreducible.展开更多
In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the ...In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.展开更多
Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bound...Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .展开更多
In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and...In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and describe the extended eigenvalue of the integral operator V.We generalize the results in[1,2,6,11,16].展开更多
In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates th...In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates the Pauli algebra, the split-biquaternion algebra and the split-quaternion algebra, we relate these algebras to Clifford algebras and we show the emergence of the stabilized Poincaré-Heisenberg algebra from the split-tetraquaternion algebra. We list without going into details some of their applications in Physics and in Born geometry.展开更多
Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent m...Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).展开更多
基金Supported in part by NSFC(10871125,10931006)a grant of Science and Technology Commission of Shanghai Municipality(09XD1402500)
文摘In this paper, the representation theory for the arlene Lie algebra H4 associated to the Nappi-Witten Lie algebra H4 is studied. Polynomial representations of the affine Nappi-Witten Lie algebra H4 are given.
文摘In this paper, we discuss the pairing problem of generators in four affine Lie algebra. That is, for any given imaginary root vector x∈g(A) , there exists y such that x and y generate a subalgebra containing g′(A).
基金Project supported by the National Natural Science Foundation of China(Grant No.11475178)
文摘In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it.
基金Supported by the National Natural Science Foundation of China(11475178,11571119)
文摘In this paper, we first give a 1-1 corresponds between torus C/Λ and cubic curve C in P_C^2. As complex manifold, they are isomorphic, therefore we can treat C/Λ as a variety and construction a vertex algebra sheaf on it.
基金National Key Basic Research Project of China under Grant Nos.2004CB318000 and 2006CB805905National Natural Science Foundation of China under Grant No.10471034+1 种基金the Outstanding Youth Fund of Henan Province under Grant No.0512000100Innovation Fund of Colleges and Universities in Henan Province
文摘For any finite-dimensional semisimple Lie algebra g, a Z+-graded vertex algebra is construsted on the vacuum representation Vk(g[θ]of g[θ]),which is a one-dimentionM central extension of 8-invariant subspace on the loop algebra Lg=g C((t^1/p)).
基金Supported in part by National Natural Science Foundation of China under Grant No. 10971071the Outstanding Youth Fund of Henan Province under Grant No. 0512000100Innovation Fund of Colleges and Universities in Henan Province
文摘In this paper, we construct a new algebra structure 7-twisted atone Lie algebra sl(3,C)[θ] and study its vertex operator representations.
文摘In this work, we use the finiteness of the Mordell-weil group and the Riemann Roch spaces to give a geometric parametrization of the set of algebraic points of any given degree over the field of rational numbers Q on curve C<sub>3 </sub>(11): y<sup>11</sup> = x<sup>3</sup> (x-1)<sup>3</sup>. This result is a special case of quotients of Fermat curves C<sub>r,s </sub>(p) : y<sup>p</sup> = x<sup>r</sup>(x-1)<sup>s</sup>, 1 ≤ r, s, r + s ≤ p-1 for p = 11 and r = s = 3. The results obtained extend the work of Gross and Rohrlich who determined the set of algebraic points on C<sub>1</sub>(11)(K) of degree at most 2 on Q.
文摘In this paper, we consider an integral basis for affine vertex algebra Vk (sl2) when the level k is integral by a direct calculation, then use the similar way to analyze an integral basis for Virasoro vertex algebra Vvir (2k,0). Finally, we take the combination of affine algebras and Virasoro Lie algebras into consideration. By analogy with the construction of Lie algebras over Z using Chevalley bases, we utilize the Z-basis of Lav whose structure constants are integral to find an integral basis for the universal enveloping algebra of it.
文摘The Nappi-Witten Lie algebra was first introduced by C. Nappi and E. Witten in the study of Wess-Zumino-Novikov-Witten (WZNW) models. They showed that the WZNW model (NW model) based on a central extension of the two-dimensional Euclidean group describes the homogeneous four-dimensional space-time corresponding to a gravitational plane wave. The associated Lie algebra is neither abelian nor semisimple. Recently K. Christodoulopoulou studied the irreducible Whittaker modules for finite- and infinite-dimensional Heisenberg algebras and for the Lie algebra obtained by adjoining a degree derivation to an infinite-dimensional Heisenberg algebra, and used these modules to construct a new class of modules for non-twisted affine algebras, which are called imaginary Whittaker modules. In this paper, imaginary Whittaker modules of the twisted affine Nappi-Witten Lie algebra are constructed based on Whittaker modules of Heisenberg algebras. It is proved that the imaginary Whittaker module with the center acting as a non-zero scalar is irreducible.
文摘In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.
文摘Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .
基金Supported by National Natural Science Foundation of China(11801094).
文摘In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and describe the extended eigenvalue of the integral operator V.We generalize the results in[1,2,6,11,16].
文摘In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates the Pauli algebra, the split-biquaternion algebra and the split-quaternion algebra, we relate these algebras to Clifford algebras and we show the emergence of the stabilized Poincaré-Heisenberg algebra from the split-tetraquaternion algebra. We list without going into details some of their applications in Physics and in Born geometry.
文摘Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).