AFM scanning images of the surface of a PTCDA/p-Si specimen used in an organic/inorganic photodetector show that PTCDA grows in island shapes that are poorly distributed, with each island shaped like a round hillock. ...AFM scanning images of the surface of a PTCDA/p-Si specimen used in an organic/inorganic photodetector show that PTCDA grows in island shapes that are poorly distributed, with each island shaped like a round hillock. The images also show that there exist enormous defects in the PTCDA layer due to pedestal sites and other defects that appear when Si atoms shift transversely, and that the bonding condition is satisfied by the action of atom suspension bonding at the surface of the Si substrate. We infer the growth mode of PTCDA deposited onto p-Si substrates as follows. First,PTCDA molecules assemble at the defects to form three-dimensional island-like PTCDA crystal nuclei, and then by the action of delocalized big π bonding, two adjacent layers of PTCDA molecules overlap to some extent and finally island-like structures form. The PTCDA molecules and Si substrate combine by a process of the combination of benzene rings with Si atoms at the defects and of acid anhydride radicals with Si atoms at the perfect fraction of the surface. In the course of combination, although the structure of the benzene rings does not change, the chemical reaction of acid anhydt'ide radicals and Si occurs to break off the C=O bond in the acid anhydride, and then C-Si-O and silicon oxide might be produced.展开更多
文摘AFM scanning images of the surface of a PTCDA/p-Si specimen used in an organic/inorganic photodetector show that PTCDA grows in island shapes that are poorly distributed, with each island shaped like a round hillock. The images also show that there exist enormous defects in the PTCDA layer due to pedestal sites and other defects that appear when Si atoms shift transversely, and that the bonding condition is satisfied by the action of atom suspension bonding at the surface of the Si substrate. We infer the growth mode of PTCDA deposited onto p-Si substrates as follows. First,PTCDA molecules assemble at the defects to form three-dimensional island-like PTCDA crystal nuclei, and then by the action of delocalized big π bonding, two adjacent layers of PTCDA molecules overlap to some extent and finally island-like structures form. The PTCDA molecules and Si substrate combine by a process of the combination of benzene rings with Si atoms at the defects and of acid anhydride radicals with Si atoms at the perfect fraction of the surface. In the course of combination, although the structure of the benzene rings does not change, the chemical reaction of acid anhydt'ide radicals and Si occurs to break off the C=O bond in the acid anhydride, and then C-Si-O and silicon oxide might be produced.