针对行星齿轮箱振动信号复杂时变调质特点使其"难表征",致使据此构建的状态辨识模型精度低的问题,提出一种基于总体局部均值分解(Ensemble local mean decomposition,ELMD)的能量熵与人工鱼群算法(Artificial fish swarm algo...针对行星齿轮箱振动信号复杂时变调质特点使其"难表征",致使据此构建的状态辨识模型精度低的问题,提出一种基于总体局部均值分解(Ensemble local mean decomposition,ELMD)的能量熵与人工鱼群算法(Artificial fish swarm algorithm,AFSA)寻找支持向量机(Support vector machine,SVM)最优核函数系数组合的行星齿轮箱关键部件的状态辨识方法。首先,利用ELMD分解经形态平均滤波的行星齿轮箱关键部件的振动信号来获取若干窄带乘积函数(Product function,PF)。然后,计算其能量熵来构建高维特征向量集。最后,将其作为输入,通过训练学习建立AFSA优化SVM的行星齿轮箱关键部件状态辨识模型。实验结果表明,所提方法能凸显原信号中的有效故障成份,提高了模型的状态辨识精度。展开更多
特征选择是网络入侵检测研究中的核心问题,为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)和支持向量机(SVM)相融合的网络入侵检测模型(AFSA-SVM)。将网络特征子集编码成人工鱼的位置,以5折交叉验证SVM训练模型检测率作为特征子集...特征选择是网络入侵检测研究中的核心问题,为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)和支持向量机(SVM)相融合的网络入侵检测模型(AFSA-SVM)。将网络特征子集编码成人工鱼的位置,以5折交叉验证SVM训练模型检测率作为特征子集优劣的评价标准,通过模拟鱼群的觅食、聚群及追尾行为找到最优特征子集,SVM根据最优特征子集进行网络入侵检测,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,相对于粒子群优化算法、遗传算法和原始特征法,AFSA-SVM提高了入侵检测效率和检测率,是一种有效的网络入侵检测模型。展开更多
文摘针对行星齿轮箱振动信号复杂时变调质特点使其"难表征",致使据此构建的状态辨识模型精度低的问题,提出一种基于总体局部均值分解(Ensemble local mean decomposition,ELMD)的能量熵与人工鱼群算法(Artificial fish swarm algorithm,AFSA)寻找支持向量机(Support vector machine,SVM)最优核函数系数组合的行星齿轮箱关键部件的状态辨识方法。首先,利用ELMD分解经形态平均滤波的行星齿轮箱关键部件的振动信号来获取若干窄带乘积函数(Product function,PF)。然后,计算其能量熵来构建高维特征向量集。最后,将其作为输入,通过训练学习建立AFSA优化SVM的行星齿轮箱关键部件状态辨识模型。实验结果表明,所提方法能凸显原信号中的有效故障成份,提高了模型的状态辨识精度。
文摘特征选择是网络入侵检测研究中的核心问题,为了提高网络入侵检测率,提出一种人工鱼群算法(AFSA)和支持向量机(SVM)相融合的网络入侵检测模型(AFSA-SVM)。将网络特征子集编码成人工鱼的位置,以5折交叉验证SVM训练模型检测率作为特征子集优劣的评价标准,通过模拟鱼群的觅食、聚群及追尾行为找到最优特征子集,SVM根据最优特征子集进行网络入侵检测,并采用KDD CUP 99数据集进行仿真测试。仿真结果表明,相对于粒子群优化算法、遗传算法和原始特征法,AFSA-SVM提高了入侵检测效率和检测率,是一种有效的网络入侵检测模型。