MADS-box genes are involved in floral organ development.Here we report thatan AGL6(Agamous-like 6)-like MADS-box gene,H0AGL6,was isolated from Hyacinthus orientalisL.Expression pattern analysis demonstrated that H0AGL...MADS-box genes are involved in floral organ development.Here we report thatan AGL6(Agamous-like 6)-like MADS-box gene,H0AGL6,was isolated from Hyacinthus orientalisL.Expression pattern analysis demonstrated that H0AGL6 transcript was detected in inflorescencebuds,tepals,carpels and ovules,but not in stamina,leaves or scales.Transgenic Arabidopsis plantsectopically expressing H0AGL6 exhibited novel phenotypes of significantly reduced plantsize,extremely early flowering,and losing inflorescence indeterminacy.In addition,wide homeoticconversion of sepals,petals,and leaves into carpel-like or ovary structures,and disappearance ornumber reduction of stamens in 35S::HoAGL6 Arabidopsis plants were also observed.RT-PCR analysisindicated that the expressions of flowering time gene SOC1 and flower meristem identity gene LFYwere significantly up-regulated in 35S::Ho4GL6transgenic Arabidopsis plants,and the expressionlevels of floral organ identity genes AG and SEP1 in leaves were also elevated.These resultsindicated that H0AGL6 was involved in the regulation of flower transition and flower organformation.展开更多
开花是植物由营养生长向生殖生长转变的重要过程,许多开花相关基因参与这一过程,AGAMOUS like 6(AGL6)亚家族是其中的重要一类,AGL6亚家族基因编码MIKC-type MADS box转录因子,含有MADS-box保守结构域,通过多条途径参与花时的调节及花...开花是植物由营养生长向生殖生长转变的重要过程,许多开花相关基因参与这一过程,AGAMOUS like 6(AGL6)亚家族是其中的重要一类,AGL6亚家族基因编码MIKC-type MADS box转录因子,含有MADS-box保守结构域,通过多条途径参与花时的调节及花器官发育。该文对AGL6及其同源基因的结构、功能、进化以及与其它相关基因之间的调控关系进行综述,并对该基因研究中存在的一些问题及今后的研究方向进行了讨论。展开更多
A cDNA named DlMADS18 was isolated from the young spikelets of the sweet bamboo, Dendrocalamus latiflorus by RACE. DNA sequence analysis showed that DlMADS18 was composed of full ORF and 3’UTR, but without 5’UTR. Th...A cDNA named DlMADS18 was isolated from the young spikelets of the sweet bamboo, Dendrocalamus latiflorus by RACE. DNA sequence analysis showed that DlMADS18 was composed of full ORF and 3’UTR, but without 5’UTR. The cDNA contained 1039 nucleotides and encoded a putative protein of 249 amino acid residues. The gene displayed the structure of a typical plant MADS box gene, which consisted of an MADS domain, K domain, a short I region, and the C-terminal region. Phylogenetic analysis of plant MADS box genes based on amino acid se- quences revealed that DlMADS18 was grouped into the AGAMOUS-LIKE 6 (AGL6)-like subfamily. It was most likely homologous to the OsMADS6 of rice (Oryza sativa), with 88% sequence identity for the entire amino acid sequences. The DlMADS18 also showed relatively high amino acid sequence identity (59%) to AGL6 of Arabidopsis thaliana. To study the functions of DlMADS18, DlMADS18 cDNA clone driven by the CaMV 35S promoter was transformed into Arabidopsis plants. Transgenic plants of DlMADS18 exhibited the pheno- types of curled leaves, dwarfism, and early flowering with clustered terminal flowers. These results indicated that DlMADS18 may probably be involved in controlling the flowering time of D. latiflorus.展开更多
文摘MADS-box genes are involved in floral organ development.Here we report thatan AGL6(Agamous-like 6)-like MADS-box gene,H0AGL6,was isolated from Hyacinthus orientalisL.Expression pattern analysis demonstrated that H0AGL6 transcript was detected in inflorescencebuds,tepals,carpels and ovules,but not in stamina,leaves or scales.Transgenic Arabidopsis plantsectopically expressing H0AGL6 exhibited novel phenotypes of significantly reduced plantsize,extremely early flowering,and losing inflorescence indeterminacy.In addition,wide homeoticconversion of sepals,petals,and leaves into carpel-like or ovary structures,and disappearance ornumber reduction of stamens in 35S::HoAGL6 Arabidopsis plants were also observed.RT-PCR analysisindicated that the expressions of flowering time gene SOC1 and flower meristem identity gene LFYwere significantly up-regulated in 35S::Ho4GL6transgenic Arabidopsis plants,and the expressionlevels of floral organ identity genes AG and SEP1 in leaves were also elevated.These resultsindicated that H0AGL6 was involved in the regulation of flower transition and flower organformation.
文摘开花是植物由营养生长向生殖生长转变的重要过程,许多开花相关基因参与这一过程,AGAMOUS like 6(AGL6)亚家族是其中的重要一类,AGL6亚家族基因编码MIKC-type MADS box转录因子,含有MADS-box保守结构域,通过多条途径参与花时的调节及花器官发育。该文对AGL6及其同源基因的结构、功能、进化以及与其它相关基因之间的调控关系进行综述,并对该基因研究中存在的一些问题及今后的研究方向进行了讨论。
基金This work was supported by the National Natural Science Foundation of China(Grant No.30200015)the Natural Science Foundation of Yunnan Province(Grant No.2002C0056M).
文摘A cDNA named DlMADS18 was isolated from the young spikelets of the sweet bamboo, Dendrocalamus latiflorus by RACE. DNA sequence analysis showed that DlMADS18 was composed of full ORF and 3’UTR, but without 5’UTR. The cDNA contained 1039 nucleotides and encoded a putative protein of 249 amino acid residues. The gene displayed the structure of a typical plant MADS box gene, which consisted of an MADS domain, K domain, a short I region, and the C-terminal region. Phylogenetic analysis of plant MADS box genes based on amino acid se- quences revealed that DlMADS18 was grouped into the AGAMOUS-LIKE 6 (AGL6)-like subfamily. It was most likely homologous to the OsMADS6 of rice (Oryza sativa), with 88% sequence identity for the entire amino acid sequences. The DlMADS18 also showed relatively high amino acid sequence identity (59%) to AGL6 of Arabidopsis thaliana. To study the functions of DlMADS18, DlMADS18 cDNA clone driven by the CaMV 35S promoter was transformed into Arabidopsis plants. Transgenic plants of DlMADS18 exhibited the pheno- types of curled leaves, dwarfism, and early flowering with clustered terminal flowers. These results indicated that DlMADS18 may probably be involved in controlling the flowering time of D. latiflorus.