High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faul...High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers.展开更多
本文以普通聚烯烃隔膜作为对比,研究了不同工艺的聚烯烃基膜制作的陶瓷隔膜对于Li Ni0.8Co0.15Al0.05O2动力锂离子电池性能的影响。表征了三种隔膜的本征性能,包括微孔形貌、透气度和离子电导率。干法基膜陶瓷隔膜、湿法基膜陶瓷隔膜和...本文以普通聚烯烃隔膜作为对比,研究了不同工艺的聚烯烃基膜制作的陶瓷隔膜对于Li Ni0.8Co0.15Al0.05O2动力锂离子电池性能的影响。表征了三种隔膜的本征性能,包括微孔形貌、透气度和离子电导率。干法基膜陶瓷隔膜、湿法基膜陶瓷隔膜和普通聚烯烃隔膜的透气度值分别为165 sec/100 m L、200 sec/100 m L和520 sec/100 m L;离子电导率分别为0.952 m S/cm^2、0.703 m S/cm^2和0.622mS/cm^2。分别采用三种隔膜制作了容量为2 A·h的软包装电池,评估了电池的倍率性能、循环寿命以及荷电保持能力。结果发现,与普通聚烯烃隔膜相比,陶瓷隔膜可以提高电池的功率性能,并且干法聚烯烃基膜制作的陶瓷隔膜,其倍率增效作用较湿法基膜的陶瓷隔膜明显,尤其当放电倍率达到电池的设计极限时,干法聚烯烃基膜制作的陶瓷隔膜对于电池倍率性能的增效作用更加显著。展开更多
基金supported by the State Key Laboratory of Technology and Equipment for Defense against Power System Operational Risks(No.SGNR0000KJJS2302137)the National Natural Science Foundation of China(Grant No.62203248)the Natural Science Foundation of Shandong Province(Grant No.ZR2020ME194).
文摘High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers.
文摘本文以普通聚烯烃隔膜作为对比,研究了不同工艺的聚烯烃基膜制作的陶瓷隔膜对于Li Ni0.8Co0.15Al0.05O2动力锂离子电池性能的影响。表征了三种隔膜的本征性能,包括微孔形貌、透气度和离子电导率。干法基膜陶瓷隔膜、湿法基膜陶瓷隔膜和普通聚烯烃隔膜的透气度值分别为165 sec/100 m L、200 sec/100 m L和520 sec/100 m L;离子电导率分别为0.952 m S/cm^2、0.703 m S/cm^2和0.622mS/cm^2。分别采用三种隔膜制作了容量为2 A·h的软包装电池,评估了电池的倍率性能、循环寿命以及荷电保持能力。结果发现,与普通聚烯烃隔膜相比,陶瓷隔膜可以提高电池的功率性能,并且干法聚烯烃基膜制作的陶瓷隔膜,其倍率增效作用较湿法基膜的陶瓷隔膜明显,尤其当放电倍率达到电池的设计极限时,干法聚烯烃基膜制作的陶瓷隔膜对于电池倍率性能的增效作用更加显著。