Recently, fault or health condition prediction of complex systems becomes an interesting research topic. However, it is difficult to establish precise physical model for complex systems, and the time series properties...Recently, fault or health condition prediction of complex systems becomes an interesting research topic. However, it is difficult to establish precise physical model for complex systems, and the time series properties are often necessary to be incorporated for the prediction in practice. Currently, the LS-SVR is widely adopted for prediction of systems with time series data. In this paper, in order to improve the prediction accuracy, accumulated generating operation (AGO) is carried out to improve the data quality and regularity of raw time series data based on grey system theory; then, the inverse accumulated generating operation (IAGO) is performed to obtain the prediction results. In addition, due to the reason that appropriate kernel function plays an important role in improving the accuracy of prediction through LS-SVR, a modified Gaussian radial basis function (RBF) is proposed. The requirements of distance functions-based kernel functions are satisfied, which ensure fast damping at the place adjacent to the test point and a moderate damping at infinity. The presented model is applied to the analysis of benchmarks. As indicated by the results, the proposed method is an effective prediction one with good precision.展开更多
基金supported by National Natural Science Foundation(NNSF)of China under Grant No.61371024Aviation Science Fund of China under Grant No.2013ZD53051+1 种基金Aerospace Technology Support Fund of Chinathe Industry-Academy-Research Project of AVIC(cxy2013XGD14)
文摘Recently, fault or health condition prediction of complex systems becomes an interesting research topic. However, it is difficult to establish precise physical model for complex systems, and the time series properties are often necessary to be incorporated for the prediction in practice. Currently, the LS-SVR is widely adopted for prediction of systems with time series data. In this paper, in order to improve the prediction accuracy, accumulated generating operation (AGO) is carried out to improve the data quality and regularity of raw time series data based on grey system theory; then, the inverse accumulated generating operation (IAGO) is performed to obtain the prediction results. In addition, due to the reason that appropriate kernel function plays an important role in improving the accuracy of prediction through LS-SVR, a modified Gaussian radial basis function (RBF) is proposed. The requirements of distance functions-based kernel functions are satisfied, which ensure fast damping at the place adjacent to the test point and a moderate damping at infinity. The presented model is applied to the analysis of benchmarks. As indicated by the results, the proposed method is an effective prediction one with good precision.
基金supported by Key Project of Science &Technology Commission of Shanghai Municipality under Grant 061107031and 06DZ22011Sunlight Plan Following Project of Shanghai MunicipalEducation Commission under grant 06GG10+1 种基金Excellent Discipline HeadPlan Project of Shanghai under grant 08XD14018ShanghaiPostdoctoral Scientific Program