期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Actor-Critic框架的渗透测试路径技术研究
1
作者
陆燕
杨秋芬
《科技资讯》
2022年第21期5-10,共6页
该文将层次强化学习与渗透测试相结合,将渗透测试过程建模为半马尔可夫决策模型,训练Agent在模拟网络环境中完成渗透测试路径发现,并提出了一种改进的基于Actor-Critic框架改进的自动分层记忆AHM-DQN算法(Automatic hierarchical memory...
该文将层次强化学习与渗透测试相结合,将渗透测试过程建模为半马尔可夫决策模型,训练Agent在模拟网络环境中完成渗透测试路径发现,并提出了一种改进的基于Actor-Critic框架改进的自动分层记忆AHM-DQN算法(Automatic hierarchical memory Deep Q Networks,AHM-DQN)。首先,在Actor网络中加入一个双向递归神经网络作为同一Agent的信息交换层;其次,在Critic网络加入其他种类的Agent信息来学习多种Agent协同策略。该算法在Actor-Critic算法上进行了以下改进:一是集成了自动分层功能,对任务目标和动作的选择进行自动分层,提高了算法的效率;二是结合记忆因子,帮助Agent有效地记忆和学习,解决奖励值的稀疏性问题,提高算法精度。该算法在学习效率和收敛速度上优于传统的分层学习算法,解决了渗透测试主要依靠人工进行的问题。
展开更多
关键词
渗透测试
分层学习
算法
ahm-dqn算法
Actor-Critic框架
下载PDF
职称材料
题名
基于Actor-Critic框架的渗透测试路径技术研究
1
作者
陆燕
杨秋芬
机构
湖南开放大学
出处
《科技资讯》
2022年第21期5-10,共6页
基金
湖南开放大学2021年度校级科研课题“改进的分层强化学习算法在自动化渗透测试路径发现中的应用研究”(项目编号:XDK-2021-A-4)
湖南省教育厅科学研究项目“基于Actor-Critic框架的DDPG算法优化研究”(项目编号:21C1186)
+1 种基金
湖南省职业院校教育教学改革研究项目“基于深度学习的高职课堂教学评价研究”(项目编号:ZJGB2021189)
湖南省自然科学基金项目“基于AdaBoost的哈欠检测算法研究”(项目编号:2021JJ60038)。
文摘
该文将层次强化学习与渗透测试相结合,将渗透测试过程建模为半马尔可夫决策模型,训练Agent在模拟网络环境中完成渗透测试路径发现,并提出了一种改进的基于Actor-Critic框架改进的自动分层记忆AHM-DQN算法(Automatic hierarchical memory Deep Q Networks,AHM-DQN)。首先,在Actor网络中加入一个双向递归神经网络作为同一Agent的信息交换层;其次,在Critic网络加入其他种类的Agent信息来学习多种Agent协同策略。该算法在Actor-Critic算法上进行了以下改进:一是集成了自动分层功能,对任务目标和动作的选择进行自动分层,提高了算法的效率;二是结合记忆因子,帮助Agent有效地记忆和学习,解决奖励值的稀疏性问题,提高算法精度。该算法在学习效率和收敛速度上优于传统的分层学习算法,解决了渗透测试主要依靠人工进行的问题。
关键词
渗透测试
分层学习
算法
ahm-dqn算法
Actor-Critic框架
Keywords
Penetration test
Hierarchical learning algorithm
ahm-dqn
algorithm
Actor-critical framework
分类号
TP393.08 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Actor-Critic框架的渗透测试路径技术研究
陆燕
杨秋芬
《科技资讯》
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部