期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Actor-Critic框架的渗透测试路径技术研究
1
作者 陆燕 杨秋芬 《科技资讯》 2022年第21期5-10,共6页
该文将层次强化学习与渗透测试相结合,将渗透测试过程建模为半马尔可夫决策模型,训练Agent在模拟网络环境中完成渗透测试路径发现,并提出了一种改进的基于Actor-Critic框架改进的自动分层记忆AHM-DQN算法(Automatic hierarchical memory... 该文将层次强化学习与渗透测试相结合,将渗透测试过程建模为半马尔可夫决策模型,训练Agent在模拟网络环境中完成渗透测试路径发现,并提出了一种改进的基于Actor-Critic框架改进的自动分层记忆AHM-DQN算法(Automatic hierarchical memory Deep Q Networks,AHM-DQN)。首先,在Actor网络中加入一个双向递归神经网络作为同一Agent的信息交换层;其次,在Critic网络加入其他种类的Agent信息来学习多种Agent协同策略。该算法在Actor-Critic算法上进行了以下改进:一是集成了自动分层功能,对任务目标和动作的选择进行自动分层,提高了算法的效率;二是结合记忆因子,帮助Agent有效地记忆和学习,解决奖励值的稀疏性问题,提高算法精度。该算法在学习效率和收敛速度上优于传统的分层学习算法,解决了渗透测试主要依靠人工进行的问题。 展开更多
关键词 渗透测试 分层学习算法 ahm-dqn算法 Actor-Critic框架
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部