In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,e...In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.展开更多
In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts ...In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China.展开更多
High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-per...High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.展开更多
Objective To explore the value of deep learning(DL)models semi-automatic training system for automatic optimization of clinical image quality control of transthoracic echocardiography(TTE).Methods Totally 1250 TTE vid...Objective To explore the value of deep learning(DL)models semi-automatic training system for automatic optimization of clinical image quality control of transthoracic echocardiography(TTE).Methods Totally 1250 TTE videos from 402 patients were retrospectively collected,including 490 apical four chamber(A4C),310 parasternal long axis view of left ventricle(PLAX)and 450 parasternal short axis view of great vessel(PSAX GV).The videos were divided into development set(245 A4C,155 PLAX,225 PSAX GV),semi-automated training set(98 A4C,62 PLAX,90 PSAX GV)and test set(147 A4C,93 PLAX,135 PSAX GV)at the ratio of 5∶2∶3.Based on development set and semi-automatic training set,DL model of quality control was semi-automatically iteratively optimized,and a semi-automatic training system was constructed,then the efficacy of DL models for recognizing TTE views and assessing imaging quality of TTE were verified in test set.Results After optimization,the overall accuracy,precision,recall,and F1 score of DL models for recognizing TTE views in test set improved from 97.33%,97.26%,97.26%and 97.26%to 99.73%,99.65%,99.77%and 99.71%,respectively,while the overall accuracy for assessing A4C,PLAX and PSAX GV TTE as standard views in test set improved from 89.12%,83.87%and 90.37%to 93.20%,90.32%and 93.33%,respectively.Conclusion The developed DL models semi-automatic training system could improve the efficiency of clinical imaging quality control of TTE and increase iteration speed.展开更多
In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear s...In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.展开更多
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne...Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.展开更多
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ...Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.展开更多
Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with ...Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with similar characteristics that are difficult to distinguish with the naked eye.However,the mechanisms of this advanced technique should be well-addressed to elucidate clinical issues.In this letter,regarding an original study presented by Takayama et al,we suggest that the authors should effectively illustrate the mechanism and detailed procedure that artificial intelligence techniques processing the acquired images,including the recognition of non-obvious difference between the normal parts and pathological ones,which were impossible to be distinguished by naked eyes,such as the basic constitutional elements of pixels and grayscale,special molecules or even some metal ions which involved into the diseases occurrence.展开更多
Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recom...Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recommended diabetes screening guidelines.To enhance early detection and reduce vision threatening complications,there has been a growing number of teleophthalmology programs and novel AI algorithms with the aim to improve eye care access.The purpose of this review is to assess current literature on teleophthalmology and AI for use in diabetic retinopathy(DR)screening,and to discuss advances and barriers to these innovative technologies.Methods:Literature review involving teleophthalmology and AI for DR screening,with focus on the past decade.Key Content and Findings:Teleophthalmology has demonstrated the ability to increase DR screening rates,enable earlier eye care access,and reduce healthcare costs.Novel AI-based DR screening programs appear accurate and effective,but detection of other ocular pathologies is still under development and not yet approved in the United States.Logistical,technological,financial,and legal barriers limit widespread adoption and long-term sustainability of teleophthalmology programs.Conclusions:The use of teleophthalmology and AI algorithms expands eye care access and helps prevent vision loss from DR and potentially other sight threatening conditions.Transparency in the process utilized for arriving at a particular diagnosis or decision to refer,often referred to as the“black box”,remains a multifaceted issue within the field of telemedicine for developing trust and improving patient-centered outcomes.展开更多
Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologi...Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education.展开更多
Legacy-based threat detection systems have not been able to keep up with the exponential growth in scope, frequency, and effect of cybersecurity threats. Artificial intelligence is being used as a result to help with ...Legacy-based threat detection systems have not been able to keep up with the exponential growth in scope, frequency, and effect of cybersecurity threats. Artificial intelligence is being used as a result to help with the issue. This paper’s primary goal is to examine how African nations are utilizing artificial intelligence to defend their infrastructure against cyberattacks. Artificial intelligence (AI) systems will make decisions that impact Africa’s future. The lack of technical expertise, the labor pool, financial resources, data limitations, uncertainty, lack of structured data, absence of government policies, ethics, user attitudes, insufficient investment in research and development, and the requirement for more adaptable and dynamic regulatory systems all pose obstacles to the adoption of AI technologies in Africa. The paper discusses how African countries are adopting artificial intelligence solutions for cybersecurity. And it shows the impact of AI to identify shadow data, monitor for abnormalities in data access and alert cyber security professionals about potential threats by anyone accessing the data or sensitive information saving valuable time in detecting and remediating issues in real-time. The study finds that 69.16% of African companies are implementing information security strategies and of these, 45% said they use technologies based on AI algorithms. This study finds that a large number of African businesses use tools that can track and analyze user behaviour in designated areas and spot anomalies, such as new users, strange IP addresses and login activity, changes to permissions on files, folders, and other resources, and the copying or erasure of massive amounts of data. Thus, we discover that just 18.18% of the target has no national cybersecurity strategy or policy. The study proposes using big data security analytics to integrate AI. Adopting it would be beneficial for all African nations, as it provides a range of cyberattack defense techniques.展开更多
Air pollution poses a critical threat to public health and environmental sustainability globally, and Nigeria is no exception. Despite significant economic growth and urban development, Nigeria faces substantial air q...Air pollution poses a critical threat to public health and environmental sustainability globally, and Nigeria is no exception. Despite significant economic growth and urban development, Nigeria faces substantial air quality challenges, particularly in urban centers. While outdoor air pollution has received considerable attention, the issue of indoor air quality remains underexplored yet equally critical. This study aims to develop a reliable, cost-effective, and user-friendly solution for continuous monitoring and reporting of indoor air quality, accessible from anywhere via a web interface. Addressing the urgent need for effective indoor air quality monitoring in urban hospitals, the research focuses on designing and implementing a smart indoor air quality monitoring system using Arduino technology. Employing an Arduino Uno, ESP8266 Wi-Fi module, and MQ135 gas sensor, the system collects real-time air quality data, transmits it to the ThingSpeak cloud platform, and visualizes it through a user-friendly web interface. This project offers a cost-effective, portable, and reliable solution for monitoring indoor air quality, aiming to mitigate health risks and promote a healthier living environment.展开更多
Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examini...Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.展开更多
The recent studies on Artificial Intelligence(AI)accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing...The recent studies on Artificial Intelligence(AI)accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing adap-tiveness and fast responding features.The Model Predictive Control(MPC)tech-nique is a widely used,safe and reliable control method based on constraints.On the other hand,the Eddy Current dynamometers are highly nonlinear braking sys-tems whose performance parameters are related to many processes related vari-ables.This study is based on an adaptive model predictive control that utilizes selected AI methods.The presented approach presents an updated the mathema-tical model of an Eddy Current Dynamometer based on experimentally obtained system operational data.Finally,the comparison of AI methods and related learn-ing performances based on the assessment technique of mean absolute percentage error(MAPE)issues are discussed.The results indicate that Single Hidden Layer Neural Network(SHLNN),General Regression Neural Network(GRNN),Radial Basis Network(RBNN),Neuro Fuzzy Network(ANFIS)coupled MPC have quite satisfying performances.The presented results indicate that,amongst them,GRNN appears to provide the best performance.展开更多
In recent years,AI(artificial intelligence)has made considerable strides,transforming a number of industries and facets of daily life.However,as AI develops more,worries about its potential dangers and unforeseen repe...In recent years,AI(artificial intelligence)has made considerable strides,transforming a number of industries and facets of daily life.However,as AI develops more,worries about its potential dangers and unforeseen repercussions have surfaced.This article investigates the claim that AI technology has broken free from human control and is now unstoppable.We look at how AI is developing right now,what it means for society,and what steps are being taken to reduce the risks that come with it.We seek to highlight the need for responsible development and implementation of this game-changing technology by examining the opportunities and challenges that AI presents.展开更多
Artificial Intelligence (AI) experienced significant advancements in recent years, and its potential power is already recognized across various industries. Yet, the rise of AI has led to a growing concern about its im...Artificial Intelligence (AI) experienced significant advancements in recent years, and its potential power is already recognized across various industries. Yet, the rise of AI has led to a growing concern about its impact on meeting the Sustainable Development Goals (SDGs). The aim of this paper was to evaluate contributions and the potential influence of AI to sustainable development in the society domain. Furthermore, the study analyzed GPT-3 responses, as one of the largest language models developed by OpenAI, descriptively. We conducted a set of queries on the SDGs to gather information on GPT-3’s perceptions of AI impact on sustainable development. Analysis of GPT-3’s contribution potential towards the SDGs showcased its broad range of capabilities for contributing to the SDGs in areas such as education, health, and communication. The study findings provide valuable insights into the contributions of AI to sustainable development in the society domain and highlight the importance of proper regulations to promote the responsible use of AI for sustainable development. We highlighted the potential for improvement in neural language processing skills of GPT-3 by avoiding imitating weak human writing styles with more mistakes in longer texts.展开更多
基金supported by the National Natural Science Foundation of China(62172033).
文摘In recent years,the global surge of High-speed Railway(HSR)revolutionized ground transportation,providing secure,comfortable,and punctual services.The next-gen HSR,fueled by emerging services like video surveillance,emergency communication,and real-time scheduling,demands advanced capabilities in real-time perception,automated driving,and digitized services,which accelerate the integration and application of Artificial Intelligence(AI)in the HSR system.This paper first provides a brief overview of AI,covering its origin,evolution,and breakthrough applications.A comprehensive review is then given regarding the most advanced AI technologies and applications in three macro application domains of the HSR system:mechanical manufacturing and electrical control,communication and signal control,and transportation management.The literature is categorized and compared across nine application directions labeled as intelligent manufacturing of trains and key components,forecast of railroad maintenance,optimization of energy consumption in railroads and trains,communication security,communication dependability,channel modeling and estimation,passenger scheduling,traffic flow forecasting,high-speed railway smart platform.Finally,challenges associated with the application of AI are discussed,offering insights for future research directions.
基金Supported by Research Project of Postgraduate Education and Teaching Reform in Jilin Province in 2023(JJKH20230060YJG)Research Project of Teaching Reform of Vocational Education and Adult Education in Jilin Province(2022ZCY295)+5 种基金Scientific Research Project of Higher Education in Jilin Province in 2023(JGJX2023D200)Research Project of Teaching Reform of Higher Education in 2023(XJSX202301)Research Project of Teaching Reform of Higher Education in 2023(XJ202303)Postgraduate Training Innovation Demonstration Project in 2023(2023YJ04)Postgraduate Training Innovation Demonstration Project in 2023(2023YJ01)Provincial College Students Innovation and Entrepreneurship Project(S202310199042&S202310199043).
文摘In view of the common problems of integrating artificial intelligence into the training of postgraduates in Acupuncture and Tuina major,this paper reviews the related research progress both at home and abroad.It puts forward the innovative reform paths for integrating artificial intelligence into postgraduate training mode of Acupuncture and Tuina major:construct the teaching staff of artificial intelligence graduate students;innovating artificial intelligence to promote the integration of classics and scientific research;constructing the ideological and political case base of artificial intelligence courses;implementing artificial intelligence platform blended teaching;building a domestic and foreign exchange platform for artificial intelligence.Through practical research in teaching,it has achieved good teaching results and played a good demonstration,leading and radiation role in similar majors in China.
文摘High power dissipating artificial intelligence (AI) chips require significant cooling to operate at maximum performance. Current trends regarding the integration of AI, as well as the power/cooling demands of high-performing server systems pose an immense thermal challenge for cooling. The use of refrigerants as a direct-to-chip cooling method is investigated as a potential cooling solution for cooling AI chips. Using a vapor compression refrigeration system (VCRS), the coolant temperature will be sub-ambient thereby increasing the total cooling capacity. Coupled with the implementation of a direct-to-chip boiler, using refrigerants to cool AI server systems can materialize as a potential solution for current AI server cooling demands. In this study, a comparison of 8 different refrigerants: R-134a, R-153a, R-717, R-508B, R-22, R-12, R-410a, and R-1234yf is analyzed for optimal performance. A control theoretical VCRS model is created to assess variable refrigerants under the same operational conditions. From this model, the coefficient of performance (COP), required mass flow rate of refrigerant, work required by the compressor, and overall heat transfer coefficient is determined for all 8 refrigerants. Lastly, a comprehensive analysis is provided to determine the most optimal refrigerants for cooling applications. R-717, commonly known as Ammonia, was found to have the highest COP value thus proving to be the optimal refrigerant for cooling AI chips and high-performing server applications.
文摘Objective To explore the value of deep learning(DL)models semi-automatic training system for automatic optimization of clinical image quality control of transthoracic echocardiography(TTE).Methods Totally 1250 TTE videos from 402 patients were retrospectively collected,including 490 apical four chamber(A4C),310 parasternal long axis view of left ventricle(PLAX)and 450 parasternal short axis view of great vessel(PSAX GV).The videos were divided into development set(245 A4C,155 PLAX,225 PSAX GV),semi-automated training set(98 A4C,62 PLAX,90 PSAX GV)and test set(147 A4C,93 PLAX,135 PSAX GV)at the ratio of 5∶2∶3.Based on development set and semi-automatic training set,DL model of quality control was semi-automatically iteratively optimized,and a semi-automatic training system was constructed,then the efficacy of DL models for recognizing TTE views and assessing imaging quality of TTE were verified in test set.Results After optimization,the overall accuracy,precision,recall,and F1 score of DL models for recognizing TTE views in test set improved from 97.33%,97.26%,97.26%and 97.26%to 99.73%,99.65%,99.77%and 99.71%,respectively,while the overall accuracy for assessing A4C,PLAX and PSAX GV TTE as standard views in test set improved from 89.12%,83.87%and 90.37%to 93.20%,90.32%and 93.33%,respectively.Conclusion The developed DL models semi-automatic training system could improve the efficiency of clinical imaging quality control of TTE and increase iteration speed.
基金supported by Prince Sultan University(Grant No.PSU-CE-TECH-135,2023).
文摘In 2023,pivotal advancements in artificial intelligence(AI)have significantly experienced.With that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled shafts.This study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these studies.Furthermore,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter piles.An extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this gap.The paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.
基金the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2024-1008.
文摘Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.
基金National Natural Science Foundation of China(82274265 and 82274588)Hunan University of Traditional Chinese Medicine Research Unveiled Marshal Programs(2022XJJB003).
文摘Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.
基金Supported by the Dean Responsible Project of Gansu Medical College,No.GY-2023FZZ01University Teachers Innovation Fund Project of Gansu Province,No.2023A-182and Key Research Project of Pingliang Science and Technology,No.PL-STK-2021A-004.
文摘Artificial intelligence(AI)can sometimes resolve difficulties that other advanced technologies and humans cannot.In medical diagnostics,AI has the advantage of processing figure recognition,especially for images with similar characteristics that are difficult to distinguish with the naked eye.However,the mechanisms of this advanced technique should be well-addressed to elucidate clinical issues.In this letter,regarding an original study presented by Takayama et al,we suggest that the authors should effectively illustrate the mechanism and detailed procedure that artificial intelligence techniques processing the acquired images,including the recognition of non-obvious difference between the normal parts and pathological ones,which were impossible to be distinguished by naked eyes,such as the basic constitutional elements of pixels and grayscale,special molecules or even some metal ions which involved into the diseases occurrence.
文摘Background and Objective:Advances in teleophthalmology and artificial intelligence(AI)for diabetic retinal screening is of growing public health interest.Currently,only 30–40%of patients with diabetes adhere to recommended diabetes screening guidelines.To enhance early detection and reduce vision threatening complications,there has been a growing number of teleophthalmology programs and novel AI algorithms with the aim to improve eye care access.The purpose of this review is to assess current literature on teleophthalmology and AI for use in diabetic retinopathy(DR)screening,and to discuss advances and barriers to these innovative technologies.Methods:Literature review involving teleophthalmology and AI for DR screening,with focus on the past decade.Key Content and Findings:Teleophthalmology has demonstrated the ability to increase DR screening rates,enable earlier eye care access,and reduce healthcare costs.Novel AI-based DR screening programs appear accurate and effective,but detection of other ocular pathologies is still under development and not yet approved in the United States.Logistical,technological,financial,and legal barriers limit widespread adoption and long-term sustainability of teleophthalmology programs.Conclusions:The use of teleophthalmology and AI algorithms expands eye care access and helps prevent vision loss from DR and potentially other sight threatening conditions.Transparency in the process utilized for arriving at a particular diagnosis or decision to refer,often referred to as the“black box”,remains a multifaceted issue within the field of telemedicine for developing trust and improving patient-centered outcomes.
文摘Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education.
文摘Legacy-based threat detection systems have not been able to keep up with the exponential growth in scope, frequency, and effect of cybersecurity threats. Artificial intelligence is being used as a result to help with the issue. This paper’s primary goal is to examine how African nations are utilizing artificial intelligence to defend their infrastructure against cyberattacks. Artificial intelligence (AI) systems will make decisions that impact Africa’s future. The lack of technical expertise, the labor pool, financial resources, data limitations, uncertainty, lack of structured data, absence of government policies, ethics, user attitudes, insufficient investment in research and development, and the requirement for more adaptable and dynamic regulatory systems all pose obstacles to the adoption of AI technologies in Africa. The paper discusses how African countries are adopting artificial intelligence solutions for cybersecurity. And it shows the impact of AI to identify shadow data, monitor for abnormalities in data access and alert cyber security professionals about potential threats by anyone accessing the data or sensitive information saving valuable time in detecting and remediating issues in real-time. The study finds that 69.16% of African companies are implementing information security strategies and of these, 45% said they use technologies based on AI algorithms. This study finds that a large number of African businesses use tools that can track and analyze user behaviour in designated areas and spot anomalies, such as new users, strange IP addresses and login activity, changes to permissions on files, folders, and other resources, and the copying or erasure of massive amounts of data. Thus, we discover that just 18.18% of the target has no national cybersecurity strategy or policy. The study proposes using big data security analytics to integrate AI. Adopting it would be beneficial for all African nations, as it provides a range of cyberattack defense techniques.
文摘Air pollution poses a critical threat to public health and environmental sustainability globally, and Nigeria is no exception. Despite significant economic growth and urban development, Nigeria faces substantial air quality challenges, particularly in urban centers. While outdoor air pollution has received considerable attention, the issue of indoor air quality remains underexplored yet equally critical. This study aims to develop a reliable, cost-effective, and user-friendly solution for continuous monitoring and reporting of indoor air quality, accessible from anywhere via a web interface. Addressing the urgent need for effective indoor air quality monitoring in urban hospitals, the research focuses on designing and implementing a smart indoor air quality monitoring system using Arduino technology. Employing an Arduino Uno, ESP8266 Wi-Fi module, and MQ135 gas sensor, the system collects real-time air quality data, transmits it to the ThingSpeak cloud platform, and visualizes it through a user-friendly web interface. This project offers a cost-effective, portable, and reliable solution for monitoring indoor air quality, aiming to mitigate health risks and promote a healthier living environment.
文摘Artificial Intelligence (AI) is transforming organizational dynamics, and revolutionizing corporate leadership practices. This research paper delves into the question of how AI influences corporate leadership, examining both its advantages and disadvantages. Positive impacts of AI are evident in communication, feedback systems, tracking mechanisms, and decision-making processes within organizations. AI-powered communication tools, as exemplified by Slack, facilitate seamless collaboration, transcending geographical barriers. Feedback systems, like Adobe’s Performance Management System, employ AI algorithms to provide personalized development opportunities, enhancing employee growth. AI-based tracking systems optimize resource allocation, as exemplified by studies like “AI-Based Tracking Systems: Enhancing Efficiency and Accountability.” Additionally, AI-powered decision support, demonstrated during the COVID-19 pandemic, showcases the capability to navigate complex challenges and maintain resilience. However, AI adoption poses challenges in human resources, potentially leading to job displacement and necessitating upskilling efforts. Managing AI errors becomes crucial, as illustrated by instances like Amazon’s biased recruiting tool. Data privacy concerns also arise, emphasizing the need for robust security measures. The proposed solution suggests leveraging Local Machine Learning Models (LLMs) to address data privacy issues. Approaches such as federated learning, on-device learning, differential privacy, and homomorphic encryption offer promising strategies. By exploring the evolving dynamics of AI and leadership, this research advocates for responsible AI adoption and proposes LLMs as a potential solution, fostering a balanced integration of AI benefits while mitigating associated risks in corporate settings.
文摘The recent studies on Artificial Intelligence(AI)accompanied by enhanced computing capabilities supports increasing attention into traditional control methods coupled with AI learning methods in an attempt to bringing adap-tiveness and fast responding features.The Model Predictive Control(MPC)tech-nique is a widely used,safe and reliable control method based on constraints.On the other hand,the Eddy Current dynamometers are highly nonlinear braking sys-tems whose performance parameters are related to many processes related vari-ables.This study is based on an adaptive model predictive control that utilizes selected AI methods.The presented approach presents an updated the mathema-tical model of an Eddy Current Dynamometer based on experimentally obtained system operational data.Finally,the comparison of AI methods and related learn-ing performances based on the assessment technique of mean absolute percentage error(MAPE)issues are discussed.The results indicate that Single Hidden Layer Neural Network(SHLNN),General Regression Neural Network(GRNN),Radial Basis Network(RBNN),Neuro Fuzzy Network(ANFIS)coupled MPC have quite satisfying performances.The presented results indicate that,amongst them,GRNN appears to provide the best performance.
文摘In recent years,AI(artificial intelligence)has made considerable strides,transforming a number of industries and facets of daily life.However,as AI develops more,worries about its potential dangers and unforeseen repercussions have surfaced.This article investigates the claim that AI technology has broken free from human control and is now unstoppable.We look at how AI is developing right now,what it means for society,and what steps are being taken to reduce the risks that come with it.We seek to highlight the need for responsible development and implementation of this game-changing technology by examining the opportunities and challenges that AI presents.
文摘Artificial Intelligence (AI) experienced significant advancements in recent years, and its potential power is already recognized across various industries. Yet, the rise of AI has led to a growing concern about its impact on meeting the Sustainable Development Goals (SDGs). The aim of this paper was to evaluate contributions and the potential influence of AI to sustainable development in the society domain. Furthermore, the study analyzed GPT-3 responses, as one of the largest language models developed by OpenAI, descriptively. We conducted a set of queries on the SDGs to gather information on GPT-3’s perceptions of AI impact on sustainable development. Analysis of GPT-3’s contribution potential towards the SDGs showcased its broad range of capabilities for contributing to the SDGs in areas such as education, health, and communication. The study findings provide valuable insights into the contributions of AI to sustainable development in the society domain and highlight the importance of proper regulations to promote the responsible use of AI for sustainable development. We highlighted the potential for improvement in neural language processing skills of GPT-3 by avoiding imitating weak human writing styles with more mistakes in longer texts.