Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of en...COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.展开更多
Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wirel...Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.展开更多
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ...Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.展开更多
Currently,in China,as the elderly population rapidly increases due to the increase in aging,the importance of the elderly’s living environment and quality of life is increasing.Accordingly,the development of technolo...Currently,in China,as the elderly population rapidly increases due to the increase in aging,the importance of the elderly’s living environment and quality of life is increasing.Accordingly,the development of technology presents the possibility of providing a better life to the elderly.This study is conducted to investigate and analyze the current status and performance of artificial intelligence robot technology introduced in the elderly residential space in China,and contribute to the improvement of the living and convenience of the elderly.First,we investigate the cases of various types of artificial intelligence robots currently being used in the residential environment for the elderly in China.Second,by evaluating the technical performance and function of each artificial intelligence robot,we will look at how it meets the needs of the elderly’s special bedfall,health care,and social interaction.Third,we analyze the impact of artificial intelligence robots on the daily life of the elderly and investigate users’experiences and effects to understand social effects.Fourth,based on the obtained results,suggestions and future prospects for effectively introducing artificial intelligence robots into the residential environment for the elderly in China are presented.Through this,it is expected to contribute to understanding how artificial intelligence robot technology is being applied in the residential environment of the elderly in China,and to find ways to improve the convenience and quality of life of the elderly.展开更多
Artificial intelligence, often referred to as AI, is a branch of computer science focused on developing systems that exhibit intelligent behavior. Broadly speaking, AI researchers aim to develop technologies that can ...Artificial intelligence, often referred to as AI, is a branch of computer science focused on developing systems that exhibit intelligent behavior. Broadly speaking, AI researchers aim to develop technologies that can think and act in a way that mimics human cognition and decision-making [1]. The foundations of AI can be traced back to early philosophical inquiries into the nature of intelligence and thinking. However, AI is generally considered to have emerged as a formal field of study in the 1940s and 1950s. Pioneering computer scientists at the time theorized that it might be possible to extend basic computer programming concepts using logic and reasoning to develop machines capable of “thinking” like humans. Over time, the definition and goals of AI have evolved. Some theorists argued for a narrower focus on developing computing systems able to efficiently solve problems, while others aimed for a closer replication of human intelligence. Today, AI encompasses a diverse set of techniques used to enable intelligent behavior in machines. Core disciplines that contribute to modern AI research include computer science, mathematics, statistics, linguistics, psychology and cognitive science, and neuroscience. Significant AI approaches used today involve statistical classification models, machine learning, and natural language processing. Classification methods are widely applicable to problems in various domains like healthcare, such as informing diagnostic or treatment decisions based on patterns in data. Dean and Goldreich, 1998, define ML as an approach through which a computer has to learn a model by itself from the data provided but no specification on the sort of model is provided to the computer. They can then predict values for things that are different from the values used in training the models. NLP looks at two interrelated concerns, the task of training computers to understand human languages and the fact that since natural languages are so complex, they lend themselves very well to serving a number of very useful goals when used by computers.展开更多
This comprehensive study investigates the multifaceted impact of AI-powered personalization on strategic communications, delving deeply into its opportunities, challenges, and future directions. Employing a rigorous m...This comprehensive study investigates the multifaceted impact of AI-powered personalization on strategic communications, delving deeply into its opportunities, challenges, and future directions. Employing a rigorous mixed-methods approach, we conduct an in-depth analysis of the effects of AI-driven personalization on audience engagement, brand perception, and conversion rates across various industries and communication channels. Our findings reveal that while AI-powered personalization significantly enhances communication effectiveness and offers unprecedented opportunities for audience connection, it also raises critical ethical considerations and implementation challenges. The study contributes substantially to the growing body of literature on AI in communications, offering both theoretical insights and practical guidelines for professionals navigating this rapidly evolving landscape. Furthermore, we propose a novel framework for ethical AI implementation in strategic communications and outline a robust agenda for future research in this dynamic field.展开更多
A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from t...A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from two hundred and forty-three soil samples to create training and validation datasets,respectively.The performance and accuracy of the models were measured by root mean square error(RMSE),coefficient of determination(R2),Pearson product-moment correlation coefficient(r),mean absolute error(MAE),variance accounted for(VAF),mean absolute percentage error(MAPE),weighted mean absolute percentage error(WMAPE),a20-index,index of scatter(IOS),and index of agreement(IOA).Comparisons between standalone models demonstrate that the model MD 29 in Gaussian process regression(GPR)and model MD 101 in support vector machine(SVM)can achieve over 96%of accuracy in predicting the optimum moisture content(OMC)and maximum dry density(MDD)of soil,and outperformed other standalone models.The comparison between deep learning models shows that the models MD 46 and MD 146 in long short-term memory(LSTM)predict OMC and MDD with higher accuracy than ANN models.However,the LSTM models outperformed the GPR models in predicting the compaction parameters.The sensitivity analysis illustrates that fine content(FC),specific gravity(SG),and liquid limit(LL)highly influence the prediction of compaction parameters.展开更多
Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid ar...Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.展开更多
This research explores the increasing importance of Artificial Intelligence(AI)and Machine Learning(ML)with relation to smart cities.It discusses the AI and ML’s ability to revolutionize various aspects of urban envi...This research explores the increasing importance of Artificial Intelligence(AI)and Machine Learning(ML)with relation to smart cities.It discusses the AI and ML’s ability to revolutionize various aspects of urban environments,including infrastructure,governance,public safety,and sustainability.The research presents the definition and characteristics of smart cities,highlighting the key components and technologies driving initiatives for smart cities.The methodology employed in this study involved a comprehensive review of relevant literature,research papers,and reports on the subject of AI and ML in smart cities.Various sources were consulted to gather information on the integration of AI and ML technologies in various aspects of smart cities,including infrastructure optimization,public safety enhancement,and citizen services improvement.The findings suggest that AI and ML technologies enable data-driven decision-making,predictive analytics,and optimization in smart city development.They are vital to the development of transport infrastructure,optimizing energy distribution,improving public safety,streamlining governance,and transforming healthcare services.However,ethical and privacy considerations,as well as technical challenges,need to be solved to guarantee the ethical and responsible usage of AI and ML in smart cities.The study concludes by discussing the challenges and future directions of AI and ML in shaping urban environments,highlighting the importance of collaborative efforts and responsible implementation.The findings highlight the transformative potential of AI and ML in optimizing resource utilization,enhancing citizen services,and creating more sustainable and resilient smart cities.Future studies should concentrate on addressing technical limitations,creating robust policy frameworks,and fostering fairness,accountability,and openness in the use of AI and ML technologies in smart cities.展开更多
The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communi...The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks.展开更多
The Internet of Medical Things(IoMT)is a collection of smart healthcare devices,hardware infrastructure,and related software applications,that facilitate the connection of healthcare information technology system via ...The Internet of Medical Things(IoMT)is a collection of smart healthcare devices,hardware infrastructure,and related software applications,that facilitate the connection of healthcare information technology system via the Internet.It is also called IoT in healthcare,facilitating secure communication of remote healthcare devices over the Internet for quick and flexible analysis of healthcare data.In other words,IoMT is an amalgam of medical devices and applications,which improves overall healthcare outcomes.However,this system is prone to securityand privacy-related attacks on healthcare data.Therefore,providing a robust security mechanism to prevent the attacks and vulnerability of IoMT is essential.To mitigate this,we proposed a new Artificial-Intelligence envisioned secure communication scheme for IoMT.The discussed network and threat models provide details of the associated network arrangement of the IoMT devices and attacks relevant to IoMT.Furthermore,we provide the security analysis of the proposed scheme to show its security against different possible attacks.Moreover,a comparative study of the proposed scheme with other similar schemes is presented.Our results show that the proposed scheme outperforms other similar schemes in terms of communication and computation costs,and security and functionality attributes.Finally,we provide a pragmatic study of the proposed scheme to observe its impact on various network performance parameters.展开更多
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number ...With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies.展开更多
Background: A recent assessment of ChatGPT on a variety of obstetric and gynecologic topics was very encouraging. However, its ability to respond to commonly asked pregnancy questions is unknown. Reference verificatio...Background: A recent assessment of ChatGPT on a variety of obstetric and gynecologic topics was very encouraging. However, its ability to respond to commonly asked pregnancy questions is unknown. Reference verification needs to be examined as well. Purpose: To evaluate ChatGPT as a source of information for commonly asked pregnancy questions and to verify the references it provides. Methods: Qualitative analysis of ChatGPT was performed. We queried ChatGPT Version 3.5 on 12 commonly asked pregnancy questions and asked for its references. Query responses were graded as “acceptable” or “not acceptable” based on correctness and completeness in comparison to American College of Obstetricians and Gynecologists (ACOG) publications, PubMed-indexed evidence, and clinical experience. References were classified as “verified”, “broken”, “irrelevant”, “non-existent” or “no references”. Review and grading of responses and references were performed by the co-authors individually and then as a group to formulate a consensus. Results: In our assessment, a grade of acceptable was given to 50% of responses (6 out of 12 questions). A grade of not acceptable was assigned to the remaining 50% of responses (5 were incomplete and 1 was incorrect). In regard to references, 58% (7 out of 12) had deficiencies (5 had no references, 1 had a broken reference, and 1 non-existent reference was provided). Conclusion: Our evaluation of ChatGPT confirms prior concerns regarding both content and references. While AI has enormous potential, it must be carefully evaluated before being accepted as accurate and reliable for this purpose.展开更多
This paper provides an overview of South Korea’s 20-year journey in adopting building information modeling(BIM) and future direction. It first discusses the six phases of BIM adoption in South Korea, starting from th...This paper provides an overview of South Korea’s 20-year journey in adopting building information modeling(BIM) and future direction. It first discusses the six phases of BIM adoption in South Korea, starting from the use of BIM as a marketing tool to its current intelligent BIM phase. The government’s support for BIM-related research and development projects is also highlighted, with a focus on the artificail intelligence (AI)-based architectural design automation project. As the future direction, it explores the integration of AI with BIM in both local and global contexts. The paper presents AIpowered architectural design methods, including AI-powered early architectural design generation and architectural detailing.Compared to AI-based early architectural design generation, architectural detailing is an unexplored research topic. This paper introduces two AI-and BIM-based architectural detailing methods, being developed at Yonsei University:namely,BIM library transplant and Natural language-based Architectural Detailing through Interaction with AI (NADIA). These methods demonstrate how AI-enhanced BIM can enable architects to interactively develop building details using a language model as a conversational AI and a knowledge base, and a BIM authoring tool as a design platform, in the near future.展开更多
This research extensively evaluates three leading mathematical software packages: Python, MATLAB, and Scilab, in the context of solving nonlinear systems of equations with five unknown variables. The study’s core obj...This research extensively evaluates three leading mathematical software packages: Python, MATLAB, and Scilab, in the context of solving nonlinear systems of equations with five unknown variables. The study’s core objectives include comparing software performance using standardized benchmarks, employing key performance metrics for quantitative assessment, and examining the influence of varying hardware specifications on software efficiency across HP ProBook, HP EliteBook, Dell Inspiron, and Dell Latitude laptops. Results from this investigation reveal insights into the capabilities of these software tools in diverse computing environments. On the HP ProBook, Python consistently outperforms MATLAB in terms of computational time. Python also exhibits a lower robustness index for problems 3 and 5 but matches or surpasses MATLAB for problem 1, for some initial guess values. In contrast, on the HP EliteBook, MATLAB consistently exhibits shorter computational times than Python across all benchmark problems. However, Python maintains a lower robustness index for most problems, except for problem 3, where MATLAB performs better. A notable challenge is Python’s failure to converge for problem 4 with certain initial guess values, while MATLAB succeeds in producing results. Analysis on the Dell Inspiron reveals a split in strengths. Python demonstrates superior computational efficiency for some problems, while MATLAB excels in handling others. This pattern extends to the robustness index, with Python showing lower values for some problems, and MATLAB achieving the lowest indices for other problems. In conclusion, this research offers valuable insights into the comparative performance of Python, MATLAB, and Scilab in solving nonlinear systems of equations. It underscores the importance of considering both software and hardware specifications in real-world applications. The choice between Python and MATLAB can yield distinct advantages depending on the specific problem and computational environment, providing guidance for researchers and practitioners in selecting tools for their unique challenges.展开更多
With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial ...With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.展开更多
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
文摘COVID-19 pandemic restrictions limited all social activities to curtail the spread of the virus.The foremost and most prime sector among those affected were schools,colleges,and universities.The education system of entire nations had shifted to online education during this time.Many shortcomings of Learning Management Systems(LMSs)were detected to support education in an online mode that spawned the research in Artificial Intelligence(AI)based tools that are being developed by the research community to improve the effectiveness of LMSs.This paper presents a detailed survey of the different enhancements to LMSs,which are led by key advances in the area of AI to enhance the real-time and non-real-time user experience.The AI-based enhancements proposed to the LMSs start from the Application layer and Presentation layer in the form of flipped classroom models for the efficient learning environment and appropriately designed UI/UX for efficient utilization of LMS utilities and resources,including AI-based chatbots.Session layer enhancements are also required,such as AI-based online proctoring and user authentication using Biometrics.These extend to the Transport layer to support real-time and rate adaptive encrypted video transmission for user security/privacy and satisfactory working of AI-algorithms.It also needs the support of the Networking layer for IP-based geolocation features,the Virtual Private Network(VPN)feature,and the support of Software-Defined Networks(SDN)for optimum Quality of Service(QoS).Finally,in addition to these,non-real-time user experience is enhanced by other AI-based enhancements such as Plagiarism detection algorithms and Data Analytics.
基金supported in part by the National Natural Science Foundation of China(NSFC)under grant numbers U22A2007 and 62171010the Beijing Natural Science Foundation under grant number L212003.
文摘Space/air communications have been envisioned as an essential part of the next-generation mobile communication networks for providing highquality global connectivity. However, the inherent broadcasting nature of wireless propagation environment and the broad coverage pose severe threats to the protection of private data. Emerging covert communications provides a promising solution to achieve robust communication security. Aiming at facilitating the practical implementation of covert communications in space/air networks, we present a tutorial overview of its potentials, scenarios, and key technologies. Specifically, first, the commonly used covertness constraint model, covert performance metrics, and potential application scenarios are briefly introduced. Then, several efficient methods that introduce uncertainty into the covert system are thoroughly summarized, followed by several critical enabling technologies, including joint resource allocation and deployment/trajectory design, multi-antenna and beamforming techniques, reconfigurable intelligent surface(RIS), and artificial intelligence algorithms. Finally, we highlight some open issues for future investigation.
基金National Natural Science Foundation of China(82274265 and 82274588)Hunan University of Traditional Chinese Medicine Research Unveiled Marshal Programs(2022XJJB003).
文摘Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.
文摘Currently,in China,as the elderly population rapidly increases due to the increase in aging,the importance of the elderly’s living environment and quality of life is increasing.Accordingly,the development of technology presents the possibility of providing a better life to the elderly.This study is conducted to investigate and analyze the current status and performance of artificial intelligence robot technology introduced in the elderly residential space in China,and contribute to the improvement of the living and convenience of the elderly.First,we investigate the cases of various types of artificial intelligence robots currently being used in the residential environment for the elderly in China.Second,by evaluating the technical performance and function of each artificial intelligence robot,we will look at how it meets the needs of the elderly’s special bedfall,health care,and social interaction.Third,we analyze the impact of artificial intelligence robots on the daily life of the elderly and investigate users’experiences and effects to understand social effects.Fourth,based on the obtained results,suggestions and future prospects for effectively introducing artificial intelligence robots into the residential environment for the elderly in China are presented.Through this,it is expected to contribute to understanding how artificial intelligence robot technology is being applied in the residential environment of the elderly in China,and to find ways to improve the convenience and quality of life of the elderly.
文摘Artificial intelligence, often referred to as AI, is a branch of computer science focused on developing systems that exhibit intelligent behavior. Broadly speaking, AI researchers aim to develop technologies that can think and act in a way that mimics human cognition and decision-making [1]. The foundations of AI can be traced back to early philosophical inquiries into the nature of intelligence and thinking. However, AI is generally considered to have emerged as a formal field of study in the 1940s and 1950s. Pioneering computer scientists at the time theorized that it might be possible to extend basic computer programming concepts using logic and reasoning to develop machines capable of “thinking” like humans. Over time, the definition and goals of AI have evolved. Some theorists argued for a narrower focus on developing computing systems able to efficiently solve problems, while others aimed for a closer replication of human intelligence. Today, AI encompasses a diverse set of techniques used to enable intelligent behavior in machines. Core disciplines that contribute to modern AI research include computer science, mathematics, statistics, linguistics, psychology and cognitive science, and neuroscience. Significant AI approaches used today involve statistical classification models, machine learning, and natural language processing. Classification methods are widely applicable to problems in various domains like healthcare, such as informing diagnostic or treatment decisions based on patterns in data. Dean and Goldreich, 1998, define ML as an approach through which a computer has to learn a model by itself from the data provided but no specification on the sort of model is provided to the computer. They can then predict values for things that are different from the values used in training the models. NLP looks at two interrelated concerns, the task of training computers to understand human languages and the fact that since natural languages are so complex, they lend themselves very well to serving a number of very useful goals when used by computers.
文摘This comprehensive study investigates the multifaceted impact of AI-powered personalization on strategic communications, delving deeply into its opportunities, challenges, and future directions. Employing a rigorous mixed-methods approach, we conduct an in-depth analysis of the effects of AI-driven personalization on audience engagement, brand perception, and conversion rates across various industries and communication channels. Our findings reveal that while AI-powered personalization significantly enhances communication effectiveness and offers unprecedented opportunities for audience connection, it also raises critical ethical considerations and implementation challenges. The study contributes substantially to the growing body of literature on AI in communications, offering both theoretical insights and practical guidelines for professionals navigating this rapidly evolving landscape. Furthermore, we propose a novel framework for ethical AI implementation in strategic communications and outline a robust agenda for future research in this dynamic field.
文摘A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from two hundred and forty-three soil samples to create training and validation datasets,respectively.The performance and accuracy of the models were measured by root mean square error(RMSE),coefficient of determination(R2),Pearson product-moment correlation coefficient(r),mean absolute error(MAE),variance accounted for(VAF),mean absolute percentage error(MAPE),weighted mean absolute percentage error(WMAPE),a20-index,index of scatter(IOS),and index of agreement(IOA).Comparisons between standalone models demonstrate that the model MD 29 in Gaussian process regression(GPR)and model MD 101 in support vector machine(SVM)can achieve over 96%of accuracy in predicting the optimum moisture content(OMC)and maximum dry density(MDD)of soil,and outperformed other standalone models.The comparison between deep learning models shows that the models MD 46 and MD 146 in long short-term memory(LSTM)predict OMC and MDD with higher accuracy than ANN models.However,the LSTM models outperformed the GPR models in predicting the compaction parameters.The sensitivity analysis illustrates that fine content(FC),specific gravity(SG),and liquid limit(LL)highly influence the prediction of compaction parameters.
文摘Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations.
文摘This research explores the increasing importance of Artificial Intelligence(AI)and Machine Learning(ML)with relation to smart cities.It discusses the AI and ML’s ability to revolutionize various aspects of urban environments,including infrastructure,governance,public safety,and sustainability.The research presents the definition and characteristics of smart cities,highlighting the key components and technologies driving initiatives for smart cities.The methodology employed in this study involved a comprehensive review of relevant literature,research papers,and reports on the subject of AI and ML in smart cities.Various sources were consulted to gather information on the integration of AI and ML technologies in various aspects of smart cities,including infrastructure optimization,public safety enhancement,and citizen services improvement.The findings suggest that AI and ML technologies enable data-driven decision-making,predictive analytics,and optimization in smart city development.They are vital to the development of transport infrastructure,optimizing energy distribution,improving public safety,streamlining governance,and transforming healthcare services.However,ethical and privacy considerations,as well as technical challenges,need to be solved to guarantee the ethical and responsible usage of AI and ML in smart cities.The study concludes by discussing the challenges and future directions of AI and ML in shaping urban environments,highlighting the importance of collaborative efforts and responsible implementation.The findings highlight the transformative potential of AI and ML in optimizing resource utilization,enhancing citizen services,and creating more sustainable and resilient smart cities.Future studies should concentrate on addressing technical limitations,creating robust policy frameworks,and fostering fairness,accountability,and openness in the use of AI and ML technologies in smart cities.
基金This work was supported by the six talent peaks project in Jiangsu Province(No.XYDXX-012)Natural Science Foundation of China(No.62002045),China Postdoctoral Science Foundation(No.2021M690565)Fundamental Research Funds for the Cornell University(No.N2117002).
文摘The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks.
基金The authors would like to thank the reviewers and the Associate Editor for their valuable suggestions that helped in improving the quality,readability and presentation of the paper.This work was supported by FCT/MCTES through national funds and when applicable co-funded EU funds under the Project UIDB/50008/2020by the Brazilian National Council for Research and Development(CNPq)via Grants No.431726/2018-3 and 313036/2020-9.
文摘The Internet of Medical Things(IoMT)is a collection of smart healthcare devices,hardware infrastructure,and related software applications,that facilitate the connection of healthcare information technology system via the Internet.It is also called IoT in healthcare,facilitating secure communication of remote healthcare devices over the Internet for quick and flexible analysis of healthcare data.In other words,IoMT is an amalgam of medical devices and applications,which improves overall healthcare outcomes.However,this system is prone to securityand privacy-related attacks on healthcare data.Therefore,providing a robust security mechanism to prevent the attacks and vulnerability of IoMT is essential.To mitigate this,we proposed a new Artificial-Intelligence envisioned secure communication scheme for IoMT.The discussed network and threat models provide details of the associated network arrangement of the IoMT devices and attacks relevant to IoMT.Furthermore,we provide the security analysis of the proposed scheme to show its security against different possible attacks.Moreover,a comparative study of the proposed scheme with other similar schemes is presented.Our results show that the proposed scheme outperforms other similar schemes in terms of communication and computation costs,and security and functionality attributes.Finally,we provide a pragmatic study of the proposed scheme to observe its impact on various network performance parameters.
基金The work of Vinay Chamola and F.Richard Yu was supported in part by the SICI SICRG Grant through the Project Artificial Intelligence Enabled Security Provisioning and Vehicular Vision Innovations for Autonomous Vehicles,and in part by the Government of Canada's National Crime Prevention Strategy and Natural Sciences and Engineering Research Council of Canada(NSERC)CREATE Program for Building Trust in Connected and Autonomous Vehicles(TrustCAV).
文摘With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation Systems(C-ITSs)have become an important area of research.As the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also increases.In addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be sufficient.Thus,there is a need to augment them with intelligent network intrusion detection techniques.Some machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent times.However,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection methods.Deep learning solutions are lucrative options as they remove the necessity for feature selection.Therefore,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more heightened.This work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge servers.Vehicular data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this paper.The proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing works.By running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of the proposed scheme is compared with those of the existing studies.
文摘Background: A recent assessment of ChatGPT on a variety of obstetric and gynecologic topics was very encouraging. However, its ability to respond to commonly asked pregnancy questions is unknown. Reference verification needs to be examined as well. Purpose: To evaluate ChatGPT as a source of information for commonly asked pregnancy questions and to verify the references it provides. Methods: Qualitative analysis of ChatGPT was performed. We queried ChatGPT Version 3.5 on 12 commonly asked pregnancy questions and asked for its references. Query responses were graded as “acceptable” or “not acceptable” based on correctness and completeness in comparison to American College of Obstetricians and Gynecologists (ACOG) publications, PubMed-indexed evidence, and clinical experience. References were classified as “verified”, “broken”, “irrelevant”, “non-existent” or “no references”. Review and grading of responses and references were performed by the co-authors individually and then as a group to formulate a consensus. Results: In our assessment, a grade of acceptable was given to 50% of responses (6 out of 12 questions). A grade of not acceptable was assigned to the remaining 50% of responses (5 were incomplete and 1 was incorrect). In regard to references, 58% (7 out of 12) had deficiencies (5 had no references, 1 had a broken reference, and 1 non-existent reference was provided). Conclusion: Our evaluation of ChatGPT confirms prior concerns regarding both content and references. While AI has enormous potential, it must be carefully evaluated before being accepted as accurate and reliable for this purpose.
基金funded by the Civil Engineering Graphics Branch of China Graphicsthe Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land,Infrastructure and Transport (Grant RS-2021-KA163269)。
文摘This paper provides an overview of South Korea’s 20-year journey in adopting building information modeling(BIM) and future direction. It first discusses the six phases of BIM adoption in South Korea, starting from the use of BIM as a marketing tool to its current intelligent BIM phase. The government’s support for BIM-related research and development projects is also highlighted, with a focus on the artificail intelligence (AI)-based architectural design automation project. As the future direction, it explores the integration of AI with BIM in both local and global contexts. The paper presents AIpowered architectural design methods, including AI-powered early architectural design generation and architectural detailing.Compared to AI-based early architectural design generation, architectural detailing is an unexplored research topic. This paper introduces two AI-and BIM-based architectural detailing methods, being developed at Yonsei University:namely,BIM library transplant and Natural language-based Architectural Detailing through Interaction with AI (NADIA). These methods demonstrate how AI-enhanced BIM can enable architects to interactively develop building details using a language model as a conversational AI and a knowledge base, and a BIM authoring tool as a design platform, in the near future.
文摘This research extensively evaluates three leading mathematical software packages: Python, MATLAB, and Scilab, in the context of solving nonlinear systems of equations with five unknown variables. The study’s core objectives include comparing software performance using standardized benchmarks, employing key performance metrics for quantitative assessment, and examining the influence of varying hardware specifications on software efficiency across HP ProBook, HP EliteBook, Dell Inspiron, and Dell Latitude laptops. Results from this investigation reveal insights into the capabilities of these software tools in diverse computing environments. On the HP ProBook, Python consistently outperforms MATLAB in terms of computational time. Python also exhibits a lower robustness index for problems 3 and 5 but matches or surpasses MATLAB for problem 1, for some initial guess values. In contrast, on the HP EliteBook, MATLAB consistently exhibits shorter computational times than Python across all benchmark problems. However, Python maintains a lower robustness index for most problems, except for problem 3, where MATLAB performs better. A notable challenge is Python’s failure to converge for problem 4 with certain initial guess values, while MATLAB succeeds in producing results. Analysis on the Dell Inspiron reveals a split in strengths. Python demonstrates superior computational efficiency for some problems, while MATLAB excels in handling others. This pattern extends to the robustness index, with Python showing lower values for some problems, and MATLAB achieving the lowest indices for other problems. In conclusion, this research offers valuable insights into the comparative performance of Python, MATLAB, and Scilab in solving nonlinear systems of equations. It underscores the importance of considering both software and hardware specifications in real-world applications. The choice between Python and MATLAB can yield distinct advantages depending on the specific problem and computational environment, providing guidance for researchers and practitioners in selecting tools for their unique challenges.
基金This work was supported by the National Key Research Plan(2021YFB2900602).
文摘With the rapid development of low-orbit satellite com-munication networks both domestically and internationally,space-terrestrial integrated networks will become the future development trend.For space and terrestrial networks with limi-ted resources,the utilization efficiency of the entire space-terres-trial integrated networks resources can be affected by the core network indirectly.In order to improve the response efficiency of core networks expansion construction,early warning of the core network elements capacity is necessary.Based on the inte-grated architecture of space and terrestrial network,multidimen-sional factors are considered in this paper,including the number of terminals,login users,and the rules of users’migration during holidays.Using artifical intelligence(AI)technologies,the regis-tered users of the access and mobility management function(AMF),authorization users of the unified data management(UDM),protocol data unit(PDU)sessions of session manage-ment function(SMF)are predicted in combination with the num-ber of login users,the number of terminals.Therefore,the core network elements capacity can be predicted in advance.The proposed method is proven to be effective based on the data from real network.