人工智能驱动的科学研究(AI for Science)被视为科学发现的第五范式的曙光。依循演绎主义的科学研究逻辑,梳理了人工智能在科学假设生成、数据收集以及分析挖掘中的应用。人工智能“数据算法算力”三原则,对科学数据的质量、算法的复杂...人工智能驱动的科学研究(AI for Science)被视为科学发现的第五范式的曙光。依循演绎主义的科学研究逻辑,梳理了人工智能在科学假设生成、数据收集以及分析挖掘中的应用。人工智能“数据算法算力”三原则,对科学数据的质量、算法的复杂性以及计算能力提出了更高的要求。AI for Science时代预计会出现科技巨头、AI专家、软硬件工程师、政府以及教育机构等紧密协同的新型科研模式。然而,AI算法的黑箱特性对科学研究的可解释性和可重复性构成潜在威胁。因此,在推进人工智能驱动的科学研究的发展过程中,必须坚持伦理优先的原则,注重科学数据的安全性管理,防范化解大模型分布外泛化带来的解释性弱等问题。展开更多
Artificial intelligence, often referred to as AI, is a branch of computer science focused on developing systems that exhibit intelligent behavior. Broadly speaking, AI researchers aim to develop technologies that can ...Artificial intelligence, often referred to as AI, is a branch of computer science focused on developing systems that exhibit intelligent behavior. Broadly speaking, AI researchers aim to develop technologies that can think and act in a way that mimics human cognition and decision-making [1]. The foundations of AI can be traced back to early philosophical inquiries into the nature of intelligence and thinking. However, AI is generally considered to have emerged as a formal field of study in the 1940s and 1950s. Pioneering computer scientists at the time theorized that it might be possible to extend basic computer programming concepts using logic and reasoning to develop machines capable of “thinking” like humans. Over time, the definition and goals of AI have evolved. Some theorists argued for a narrower focus on developing computing systems able to efficiently solve problems, while others aimed for a closer replication of human intelligence. Today, AI encompasses a diverse set of techniques used to enable intelligent behavior in machines. Core disciplines that contribute to modern AI research include computer science, mathematics, statistics, linguistics, psychology and cognitive science, and neuroscience. Significant AI approaches used today involve statistical classification models, machine learning, and natural language processing. Classification methods are widely applicable to problems in various domains like healthcare, such as informing diagnostic or treatment decisions based on patterns in data. Dean and Goldreich, 1998, define ML as an approach through which a computer has to learn a model by itself from the data provided but no specification on the sort of model is provided to the computer. They can then predict values for things that are different from the values used in training the models. NLP looks at two interrelated concerns, the task of training computers to understand human languages and the fact that since natural languages are so complex, they lend themselves very well to serving a number of very useful goals when used by computers.展开更多
文摘人工智能驱动的科学研究(AI for Science)被视为科学发现的第五范式的曙光。依循演绎主义的科学研究逻辑,梳理了人工智能在科学假设生成、数据收集以及分析挖掘中的应用。人工智能“数据算法算力”三原则,对科学数据的质量、算法的复杂性以及计算能力提出了更高的要求。AI for Science时代预计会出现科技巨头、AI专家、软硬件工程师、政府以及教育机构等紧密协同的新型科研模式。然而,AI算法的黑箱特性对科学研究的可解释性和可重复性构成潜在威胁。因此,在推进人工智能驱动的科学研究的发展过程中,必须坚持伦理优先的原则,注重科学数据的安全性管理,防范化解大模型分布外泛化带来的解释性弱等问题。
文摘Artificial intelligence, often referred to as AI, is a branch of computer science focused on developing systems that exhibit intelligent behavior. Broadly speaking, AI researchers aim to develop technologies that can think and act in a way that mimics human cognition and decision-making [1]. The foundations of AI can be traced back to early philosophical inquiries into the nature of intelligence and thinking. However, AI is generally considered to have emerged as a formal field of study in the 1940s and 1950s. Pioneering computer scientists at the time theorized that it might be possible to extend basic computer programming concepts using logic and reasoning to develop machines capable of “thinking” like humans. Over time, the definition and goals of AI have evolved. Some theorists argued for a narrower focus on developing computing systems able to efficiently solve problems, while others aimed for a closer replication of human intelligence. Today, AI encompasses a diverse set of techniques used to enable intelligent behavior in machines. Core disciplines that contribute to modern AI research include computer science, mathematics, statistics, linguistics, psychology and cognitive science, and neuroscience. Significant AI approaches used today involve statistical classification models, machine learning, and natural language processing. Classification methods are widely applicable to problems in various domains like healthcare, such as informing diagnostic or treatment decisions based on patterns in data. Dean and Goldreich, 1998, define ML as an approach through which a computer has to learn a model by itself from the data provided but no specification on the sort of model is provided to the computer. They can then predict values for things that are different from the values used in training the models. NLP looks at two interrelated concerns, the task of training computers to understand human languages and the fact that since natural languages are so complex, they lend themselves very well to serving a number of very useful goals when used by computers.