Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of...Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of Al-7Si. It is found that the number and the settlement of AlB2 particles in the melt all have effect on the grain refining efficiency. On the basis of experiments and theoretical analysis, a new grain refinement mechanism was proposed to explain the grain refinement action of Al-3B on hypoeutectic Al-Si alloys. The formation of 'Al-AlB2' shell structure is the direct reason for grain refinement and the undissolved AlB2 particles is the indirect nucleating base for subsequent α(Al) phase.展开更多
V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were ...V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were investigated. The results show that appropriate technological parameters are: the mass ratio of V205 to TiO2 is 0.5:1, Al addition represents 95% of the theoretical value, and the Al-Mg alloy addition amount is one third that of the Al addition. The results from energy spectrum analysis show that V and Fe distribute uniformly in the prepared alloy, while the segregation for Ti, i.e. Ti-rich phase is detected. A spray refming process was carried out to reduce the impurity contents of Al and O in the prepared alloys. The Al content drops from 4.27% to 1.86%, and the O content drops from 2.10% to 0.91% after the refining process.展开更多
Al-5C master alloy was prepared by powder in situ synthesis process, and its effects on grain refinement of AZ31 alloy and refining mechanism were investigated. The results indicate that the AI 5C master alloy consist...Al-5C master alloy was prepared by powder in situ synthesis process, and its effects on grain refinement of AZ31 alloy and refining mechanism were investigated. The results indicate that the AI 5C master alloy consists of a(Al) and A14C3 phases, and the size distribution of Al4C3 particles is controlled by sintering time. The AI 5C master alloy can remarkably reduce the grain size of AZ31 alloy, which decreases with the increasing addition amount of AI-SC master alloy when the addition amount is below 2%. The refining mechanism is attributed to the formation of new compounds of Al-C-Mnparticles by Al4C3 and Mn, which might act as nucleating substrates for a-Mg grain.展开更多
Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn...Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn master alloys were prepared by melting and casting. Their microstructures were observed by optical microscopy and scanning electron microscopy. The electrochemical properties, hydrogen evolution and mass loss of Mg-6Al-5Pb-0.5Mn alloys were studied. The results show that Mg-6Al-5Pb-0.5Mn alloy added with Al-50%Mn master alloy provides more negative corrosion average potential (-1.66 V), smaller corrosion current density (7 μm/cm2) and lower free corrosion rate (0.51 mg·cm-2·h-1) than other alloys. This is probably attributed to the presence of Al11Mn4 phase, which facilitates the self-peeling of corrosion products and enlarges the electrochemical reaction area as well as enhances the electrochemical activity.展开更多
The microstructure evolution of Al–Sr master alloy during continuous extrusion was investigated using X-ray diffractometer, scanning electron microscope and transmission electron microscope. Results indicate that t...The microstructure evolution of Al–Sr master alloy during continuous extrusion was investigated using X-ray diffractometer, scanning electron microscope and transmission electron microscope. Results indicate that the continuous extrusion process could change the Al4Sr particles of the alloy significantly in size and morphology. The as-cast needle-like Al4Sr particles are broken into small blocks in upsetting zone and crushed heavily in adhesion zone. Plenty of dislocations get tangled up in right-angle bending zone. Al4Sr particles grow in the extending zone. Finally, Al4Sr particles in products are approximately 28 μm in length. Al2Sr particles precipitate during the process. Compared with products by horizontal extrusion, Al4Sr particles by continuous extrusion are finer and distribute more evenly.展开更多
Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD...Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It shows that the primary particles are dendrite-shaped particles comprised of several attached small cubic, cusped-cubic or crucifer shape particles at slow cooling rate. However, the primary particles are separated with crucifer shape at intermediate cooling rate, and they are cubic with cusped-cubic shape at high cooling rate. Meanwhile, the separated and attached particles present AlaSc/AlaZr1-xScx core-shell structure. The formation mechanism of the structure was systematically investigated by a mathematical model.展开更多
Two mixing techniques,the immersion method and the vortex method,were adopted in the production of Al-3%B master alloys since the generally used production route involving the direct addition of KBF4 salt to molten al...Two mixing techniques,the immersion method and the vortex method,were adopted in the production of Al-3%B master alloys since the generally used production route involving the direct addition of KBF4 salt to molten aluminum has several drawbacks.The experimental results demonstrate that the Al-B master alloys produced by the immersion method show a microstructure characterized by the appearances of AlB12 phase and many agglomerations of boride particles,while the Al-B master alloy produced by the vortex method exhibits a well dispersed microstructure of AlB2 particles in the matrix.The distinct microstructure features result from the differences in the stirring speed during the salt additions and the average size of the salt droplets achieved by the salt additions.展开更多
A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed cry...A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed crystal with a diameter of (110-a:17) ~tm. The results indicate that A14C3 and TiC particle cluster, rather than a single particle, plays an important role in the refining process. Compared with the simplex smooth nucleating substrate, concave regions on the particle cluster provide easier route for the transformation from liquid Mg atoms to stable nucleus. Nucleus with a small size can also reach the critical nucleation radius when they attach on the concave regions of the substrate. A14C3 and TiC particle clusters thus become more favorable nucleating substrate for a-Mg grains.展开更多
An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduc...An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduced into the system plays an important role in remarkably improving the distribution and content of AlP particles due to their similar crystal structure and lattice parameters. ZL109 alloys have shown fast modification response to the addition of 0.5% Al-15Si-3.5P master alloy at 720℃, with a mass of primary Si precipitating in size of about 15 μm. Also, coarse primary Si grains in AI-30Si alloy can be refined dramatically from 150 μm to 37 μm after the addition of 2.0% Al-15Si-3.5P master alloy at 850℃. The P recovery of the Al-15Si-3.5P master alloy is much higher than that of a Cu-8.5P master alloy due to the pre-formed AlP particles.展开更多
In this study, grain refining effect of Al-1.5℃ master alloy was examined on an AZ63B magnesium alloy, and the refining mechanism was studied through investigating the role of C and Fe in this process. The results sh...In this study, grain refining effect of Al-1.5℃ master alloy was examined on an AZ63B magnesium alloy, and the refining mechanism was studied through investigating the role of C and Fe in this process. The results show that addition of Al-1.5℃ master alloy leads to significant decrease of the mean grain size from about 270μm to 50μm at the center of the AZ63 alloy ingot. Grain refinement by carbon addition is mainly due to the heterogeneity nucleation on the Al-, C-, O-, Fe- and Mn-rich particles, but not constitutional undercooling caused by the carbon solute element. Fe plays an important role in the formation of the nucleating particles, but not acts as an inhibiting element.展开更多
Al Sr master alloy was prepared by using liquid aluminum cathode and a mixture of Na 3AlF 6 - SrCO 3 as the basic molten salt electrolyte in a laboratory electrolysis cell.The effects of electrolyte compositi...Al Sr master alloy was prepared by using liquid aluminum cathode and a mixture of Na 3AlF 6 - SrCO 3 as the basic molten salt electrolyte in a laboratory electrolysis cell.The effects of electrolyte composition,electrolysis temperature,cathodic current density and the electrolytic duration on Sr content of Al Sr alloy were studied.Through laboratory experiments,the parameters for smooth electrolytic reaction were proposed.展开更多
In this article, a novel Al-6Zr-2P master alloy with ZrP particles was successfully synthesized, and the refining performance of this novel master alloy for the primary Si in Cu-50Si alloys was also investigated. By m...In this article, a novel Al-6Zr-2P master alloy with ZrP particles was successfully synthesized, and the refining performance of this novel master alloy for the primary Si in Cu-50Si alloys was also investigated. By means of the fracture plane observation, it is found that the ZrP phase would precipitate first in the solidification pro- cess, and then, the ZrAl3 phase grows around them. Fur- thermore, it is observed that the refining effect can be remarkably improved by changing the addition sequence of the raw materials. After the melting of commercial Cu, the 2.0 wt% Al-6Zr-2P master alloy and crystalline Si were added in sequence, and the mean size of the primary Si in Cu-50Si alloy can be significantly refined from 255.7 to 75.3 gm. Meanwhile, the refining mechanism was dis- cussed in detail.展开更多
The influences of preparation conditions of Al-5Ti-B (as-cast and hot-rolled) and Al-10Sr (as-cast and hotextruded) and melt treatment procedures on the grain refinement and modification performance of A356 alloy ...The influences of preparation conditions of Al-5Ti-B (as-cast and hot-rolled) and Al-10Sr (as-cast and hotextruded) and melt treatment procedures on the grain refinement and modification performance of A356 alloy are experimentally studied. For the two master alloys, the 50% reduction is sufficient to meet the demands of the efficient grain refinement and modification of A356 alloy. When Al-STi-B is introduced into the melt prior to degassing, the grain refinement efficiency of Al-5Ti-B will be greatly increased due to the better dispersity of TiB2 particles. Al-5Ti-B master alloy is less prone to affect the modification effect of Al-10Sr when they are used together.展开更多
The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the r...The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.展开更多
Effects of cooling rates on the morphology, sizes and species of primary vanadium-containing phases in Al-10V master alloys were investigated. The results show that the primary vanadium-containing phases with differen...Effects of cooling rates on the morphology, sizes and species of primary vanadium-containing phases in Al-10V master alloys were investigated. The results show that the primary vanadium-containing phases with different morphologies and compositions present in Al-10V master alloys at different cooling rates with the pouring temperature of 1,170 °C. When the Al-10V master alloy is solidified in the refractory mold at a cooling rate of 2 °C·s-1, the vanadium-containing phases are mainly plate-like Al10V phases, with the average size of 100.0 μm in the center and 93.2 μm at the edge of the ingot. When the master alloy is solidified in the graphite mold at a cooling rate of 24.3 °C·s-1, the primary vanadium-containing phases are dendritic Al3V phases, with the average length of 297.0 μm for the first dendrite in the center and 275.0 μm at the edge of the ingot. The secondary dendrite arm spacing (SDAS) is 9.5 μm in the center and 9.3 μm at the edge of the ingot, respectively. When the solidification is carried out in the copper mould at a cooling rate of 45.7 °C·s-1, the primary vanadium-containing phases are also Al3V phases but with smaller size, compared with that prepared at the cooling rate of 24.3 °C·s-1. As a result, the average length is 190.0 μm for the first dendrite in the center and 150.0 μm at the edge of the ingot. The SDAS is 9.8 μm in the center and 4.4 μm at the edge of the ingot, respectively.展开更多
Previous studies have proved that the zirconium(Zr)alloying and grain refining performance of a Mg-Zr master alloy on Mg alloy is closely related to the distribution of Zr particle size,and a Mg-Zr master alloy with m...Previous studies have proved that the zirconium(Zr)alloying and grain refining performance of a Mg-Zr master alloy on Mg alloy is closely related to the distribution of Zr particle size,and a Mg-Zr master alloy with more Zr particles in size range of 1-5μm exhibits a better refining efficiency.In this paper,friction stir processing(FSP)was used to modify the Zr particles size distribution of a commercially available Mg-30 wt.%Zr master alloy,and the subsequent grain refinement ability was studied by trials on a typical Mg-3Nd-0.2Zn-0.6Zr(wt.%,NZ30K)alloy.It is found that plenty of large Zr particles in the as-received Mg-30%Zr master alloy are broken by FSP.Grain refinement tests reveal that the refining efficiency of Mg-30%Zr alloy is significantly improved by FSP,which is attributed to the better distribution of Zr particles.The refinement effect by adding 0.6%FSP-ed Mg-30%Zr is approximately equivalent to that by adding 1.0%as-received Mg-30%Zr.Due to the easy and convenient operation of FSP,this study provides a new method to develop a more efficient Mg-Zr refiner.展开更多
This paper summarizes a process for the preparation of Al5%Zr master alloy by the reduction of K2ZrF6 with aluminium. The reduction in grain size of aluminium by addition of known quantity of master alloy is also stud...This paper summarizes a process for the preparation of Al5%Zr master alloy by the reduction of K2ZrF6 with aluminium. The reduction in grain size of aluminium by addition of known quantity of master alloy is also studied.展开更多
Al-Ti-C-Y master alloy was prepared by combining SHS technique and melting-casting method. The microstructure of master alloy and its grain-refining effect on AZ31 alloy were investigated by means of OM, XRD, SEM and ...Al-Ti-C-Y master alloy was prepared by combining SHS technique and melting-casting method. The microstructure of master alloy and its grain-refining effect on AZ31 alloy were investigated by means of OM, XRD, SEM and EDS. Experimental results indicated that the prepared master alloy consisted of α-Al, TiAl3, TiC and Al3Y phases, and exhibited good grain-refining performance of AZ31 alloy. Morphology of α-Mg changed from coarse dendritic to free equiaxed and the average grain size of α-Mg matrix reduced from the original 580 to 170 μm after adding 1.0 wt.% master alloy. The grain refining efficiency of Al-Ti-C-Y master alloy on AZ31 alloy was mainly attributed to heterogeneous nucleation of TiC particles and grain growth restriction of Al-Y compound or TiC at grain boundaries.展开更多
The mechanical properties of castings depend on the grain size.There is evidence that titanium and boron(Al-5Ti-1B master alloy)affect the grain size of magnesium alloys.Here,the influence of the addition of 0-1 wt.%o...The mechanical properties of castings depend on the grain size.There is evidence that titanium and boron(Al-5Ti-1B master alloy)affect the grain size of magnesium alloys.Here,the influence of the addition of 0-1 wt.%of Al-5Ti-1B master alloy on the grain size of AZ91 magnesium alloy was investigated.Melting of the alloy was performed in steel and corundum crucibles.To study the effect of cooling rate on grain size,cylindrical samples were cast in steel and fireclay molds.The Al-5Ti-1B master alloy addition did not change the phase composition of the AZ91 alloy.This study demonstrates that the addition of Al-5Ti-1B did not contribute to the grain refinement of the AZ91 alloy,but rather led to its coarsening for samples cast in both the steel and fireclay molds.Increasing the holding time after the addition of the Al-5Ti-1B master alloy from 15 to 110 minutes also did not lead to significant grain coarsening.The mechanical properties of the AZ91 alloy samples slightly improved after Al-5Ti-1B addition.展开更多
基金Project supported by Tsinghua-Wuxi Science Foundation, China
文摘Al-3B master alloy is a kind of efficient grain refiner for hypoeutectic Al-Si alloys. Experiments were carried out to evaluate the effect of undissolved AlB2 particles in Al-3B master alloy on the grain refinement of Al-7Si. It is found that the number and the settlement of AlB2 particles in the melt all have effect on the grain refining efficiency. On the basis of experiments and theoretical analysis, a new grain refinement mechanism was proposed to explain the grain refinement action of Al-3B on hypoeutectic Al-Si alloys. The formation of 'Al-AlB2' shell structure is the direct reason for grain refinement and the undissolved AlB2 particles is the indirect nucleating base for subsequent α(Al) phase.
基金Project (2006AA068128) supported by the High-tech Research and Development Program of China
文摘V-Ti-Fe master alloys were prepared by metaUothermic reduction method, and the influences of the mass ratio of V205 to TiO2, Al and Al-Mg alloy addition amounts on the metal recovery rates and alloy compositions were investigated. The results show that appropriate technological parameters are: the mass ratio of V205 to TiO2 is 0.5:1, Al addition represents 95% of the theoretical value, and the Al-Mg alloy addition amount is one third that of the Al addition. The results from energy spectrum analysis show that V and Fe distribute uniformly in the prepared alloy, while the segregation for Ti, i.e. Ti-rich phase is detected. A spray refming process was carried out to reduce the impurity contents of Al and O in the prepared alloys. The Al content drops from 4.27% to 1.86%, and the O content drops from 2.10% to 0.91% after the refining process.
基金Project(2011921065)supported by Liaoning BaiQianWan Talents Program,ChinaProject(DUT11ZD115)supported by the Fundamental Research Funds for the Central Universities,China
文摘Al-5C master alloy was prepared by powder in situ synthesis process, and its effects on grain refinement of AZ31 alloy and refining mechanism were investigated. The results indicate that the AI 5C master alloy consists of a(Al) and A14C3 phases, and the size distribution of Al4C3 particles is controlled by sintering time. The AI 5C master alloy can remarkably reduce the grain size of AZ31 alloy, which decreases with the increasing addition amount of AI-SC master alloy when the addition amount is below 2%. The refining mechanism is attributed to the formation of new compounds of Al-C-Mnparticles by Al4C3 and Mn, which might act as nucleating substrates for a-Mg grain.
基金Project(JPPT-115-168)supported by the National Key Science and Technological Project of ChinaProject(51101171)supported by the National Natural Science Foundation of China
文摘Mg-Al-Pb alloy is one of the newly developed materials for the seawater activated batteries. As-cast Mg-6Al-5Pb and Mg-6Al-5Pb-0.5Mn alloys with different additions of Al-15%Mn (mass fraction), Al-30%Mn and Al-50%Mn master alloys were prepared by melting and casting. Their microstructures were observed by optical microscopy and scanning electron microscopy. The electrochemical properties, hydrogen evolution and mass loss of Mg-6Al-5Pb-0.5Mn alloys were studied. The results show that Mg-6Al-5Pb-0.5Mn alloy added with Al-50%Mn master alloy provides more negative corrosion average potential (-1.66 V), smaller corrosion current density (7 μm/cm2) and lower free corrosion rate (0.51 mg·cm-2·h-1) than other alloys. This is probably attributed to the presence of Al11Mn4 phase, which facilitates the self-peeling of corrosion products and enlarges the electrochemical reaction area as well as enhances the electrochemical activity.
基金Project(51175055)supported by the National Natural Science Foundation of ChinaProject(LR2015011)supported by Program for Liaoning Excellent Talents in University,China
文摘The microstructure evolution of Al–Sr master alloy during continuous extrusion was investigated using X-ray diffractometer, scanning electron microscope and transmission electron microscope. Results indicate that the continuous extrusion process could change the Al4Sr particles of the alloy significantly in size and morphology. The as-cast needle-like Al4Sr particles are broken into small blocks in upsetting zone and crushed heavily in adhesion zone. Plenty of dislocations get tangled up in right-angle bending zone. Al4Sr particles grow in the extending zone. Finally, Al4Sr particles in products are approximately 28 μm in length. Al2Sr particles precipitate during the process. Compared with products by horizontal extrusion, Al4Sr particles by continuous extrusion are finer and distribute more evenly.
基金Project(2012CB619503)supported by the National Basic Research Program of ChinaProject(2013AA031001)supported by the National High-tech Research and Development Program of ChinaProject(2012DFA50630)supported by the International Science and Technology Cooperation Program of China
文摘Al-1.0%Sc-1.0%Zr (mass fraction) master alloy was prepared at different cooling rates. The morphology and thermodynamics data of the primary particles of the master alloy were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). It shows that the primary particles are dendrite-shaped particles comprised of several attached small cubic, cusped-cubic or crucifer shape particles at slow cooling rate. However, the primary particles are separated with crucifer shape at intermediate cooling rate, and they are cubic with cusped-cubic shape at high cooling rate. Meanwhile, the separated and attached particles present AlaSc/AlaZr1-xScx core-shell structure. The formation mechanism of the structure was systematically investigated by a mathematical model.
基金Project(u0837601)supported by the National Natural Science Foundation of China
文摘Two mixing techniques,the immersion method and the vortex method,were adopted in the production of Al-3%B master alloys since the generally used production route involving the direct addition of KBF4 salt to molten aluminum has several drawbacks.The experimental results demonstrate that the Al-B master alloys produced by the immersion method show a microstructure characterized by the appearances of AlB12 phase and many agglomerations of boride particles,while the Al-B master alloy produced by the vortex method exhibits a well dispersed microstructure of AlB2 particles in the matrix.The distinct microstructure features result from the differences in the stirring speed during the salt additions and the average size of the salt droplets achieved by the salt additions.
基金Project(DUT15JJ(G)01) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2009AA03Z525) supported by the National High-tech Research and Development Program of China
文摘A novel A1-Ti-C master alloy containing A14C3 and TiC particle clusters, which exhibits great refining potential for Mg, was prepared. With the addition of 2% A1-Ti-C master alloy, the grains transform to equiaxed crystal with a diameter of (110-a:17) ~tm. The results indicate that A14C3 and TiC particle cluster, rather than a single particle, plays an important role in the refining process. Compared with the simplex smooth nucleating substrate, concave regions on the particle cluster provide easier route for the transformation from liquid Mg atoms to stable nucleus. Nucleus with a small size can also reach the critical nucleation radius when they attach on the concave regions of the substrate. A14C3 and TiC particle clusters thus become more favorable nucleating substrate for a-Mg grains.
基金supported by the National Science Fund for Distinguished Young Scholars (No. 50625101)the Key Project of Science and Technology Research of the Ministry of Education of China (No. 106103)
文摘An Al-Si-P master alloy has been developed by an in-situ reaction and the electron probe microanalyzer (EPMA) results show that there are many pre-formed AlP particles contained in the master alloy. Silicon introduced into the system plays an important role in remarkably improving the distribution and content of AlP particles due to their similar crystal structure and lattice parameters. ZL109 alloys have shown fast modification response to the addition of 0.5% Al-15Si-3.5P master alloy at 720℃, with a mass of primary Si precipitating in size of about 15 μm. Also, coarse primary Si grains in AI-30Si alloy can be refined dramatically from 150 μm to 37 μm after the addition of 2.0% Al-15Si-3.5P master alloy at 850℃. The P recovery of the Al-15Si-3.5P master alloy is much higher than that of a Cu-8.5P master alloy due to the pre-formed AlP particles.
基金supported by the National Natural Science Foundation of China(No.50171037)Natural Science Foundation of Shandong Province of China(No.Z2004F03).
文摘In this study, grain refining effect of Al-1.5℃ master alloy was examined on an AZ63B magnesium alloy, and the refining mechanism was studied through investigating the role of C and Fe in this process. The results show that addition of Al-1.5℃ master alloy leads to significant decrease of the mean grain size from about 270μm to 50μm at the center of the AZ63 alloy ingot. Grain refinement by carbon addition is mainly due to the heterogeneity nucleation on the Al-, C-, O-, Fe- and Mn-rich particles, but not constitutional undercooling caused by the carbon solute element. Fe plays an important role in the formation of the nucleating particles, but not acts as an inhibiting element.
文摘Al Sr master alloy was prepared by using liquid aluminum cathode and a mixture of Na 3AlF 6 - SrCO 3 as the basic molten salt electrolyte in a laboratory electrolysis cell.The effects of electrolyte composition,electrolysis temperature,cathodic current density and the electrolytic duration on Sr content of Al Sr alloy were studied.Through laboratory experiments,the parameters for smooth electrolytic reaction were proposed.
基金financially supported by the National Natural Science Foundation of China (No. 51202088)the Shandong Doctoral Foundation (BS2010CL005)+1 种基金the Doctoral Foundation (No. XBS1106)the Research Foundation of the University of Jinan (No. XKY1106)
文摘In this article, a novel Al-6Zr-2P master alloy with ZrP particles was successfully synthesized, and the refining performance of this novel master alloy for the primary Si in Cu-50Si alloys was also investigated. By means of the fracture plane observation, it is found that the ZrP phase would precipitate first in the solidification pro- cess, and then, the ZrAl3 phase grows around them. Fur- thermore, it is observed that the refining effect can be remarkably improved by changing the addition sequence of the raw materials. After the melting of commercial Cu, the 2.0 wt% Al-6Zr-2P master alloy and crystalline Si were added in sequence, and the mean size of the primary Si in Cu-50Si alloy can be significantly refined from 255.7 to 75.3 gm. Meanwhile, the refining mechanism was dis- cussed in detail.
文摘The influences of preparation conditions of Al-5Ti-B (as-cast and hot-rolled) and Al-10Sr (as-cast and hotextruded) and melt treatment procedures on the grain refinement and modification performance of A356 alloy are experimentally studied. For the two master alloys, the 50% reduction is sufficient to meet the demands of the efficient grain refinement and modification of A356 alloy. When Al-STi-B is introduced into the melt prior to degassing, the grain refinement efficiency of Al-5Ti-B will be greatly increased due to the better dispersity of TiB2 particles. Al-5Ti-B master alloy is less prone to affect the modification effect of Al-10Sr when they are used together.
文摘The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.
基金financially supported by the Electromagnetic Processing of Materials (EPM) Lab Foundation in Northeastern University in China(No.NEU-EPM-005)the National Natural Science Foundation of China(Nos.51374067 and 51804010)the Training Program Foundation for the Talents by Beijing(No.2015000020124G023)
文摘Effects of cooling rates on the morphology, sizes and species of primary vanadium-containing phases in Al-10V master alloys were investigated. The results show that the primary vanadium-containing phases with different morphologies and compositions present in Al-10V master alloys at different cooling rates with the pouring temperature of 1,170 °C. When the Al-10V master alloy is solidified in the refractory mold at a cooling rate of 2 °C·s-1, the vanadium-containing phases are mainly plate-like Al10V phases, with the average size of 100.0 μm in the center and 93.2 μm at the edge of the ingot. When the master alloy is solidified in the graphite mold at a cooling rate of 24.3 °C·s-1, the primary vanadium-containing phases are dendritic Al3V phases, with the average length of 297.0 μm for the first dendrite in the center and 275.0 μm at the edge of the ingot. The secondary dendrite arm spacing (SDAS) is 9.5 μm in the center and 9.3 μm at the edge of the ingot, respectively. When the solidification is carried out in the copper mould at a cooling rate of 45.7 °C·s-1, the primary vanadium-containing phases are also Al3V phases but with smaller size, compared with that prepared at the cooling rate of 24.3 °C·s-1. As a result, the average length is 190.0 μm for the first dendrite in the center and 150.0 μm at the edge of the ingot. The SDAS is 9.8 μm in the center and 4.4 μm at the edge of the ingot, respectively.
基金This work is supported by National Natural Science Foundation of China(No.51401125,No.51201103)SJTU Special Funds for Science and Technology Innovation(No.13X100030018).
文摘Previous studies have proved that the zirconium(Zr)alloying and grain refining performance of a Mg-Zr master alloy on Mg alloy is closely related to the distribution of Zr particle size,and a Mg-Zr master alloy with more Zr particles in size range of 1-5μm exhibits a better refining efficiency.In this paper,friction stir processing(FSP)was used to modify the Zr particles size distribution of a commercially available Mg-30 wt.%Zr master alloy,and the subsequent grain refinement ability was studied by trials on a typical Mg-3Nd-0.2Zn-0.6Zr(wt.%,NZ30K)alloy.It is found that plenty of large Zr particles in the as-received Mg-30%Zr master alloy are broken by FSP.Grain refinement tests reveal that the refining efficiency of Mg-30%Zr alloy is significantly improved by FSP,which is attributed to the better distribution of Zr particles.The refinement effect by adding 0.6%FSP-ed Mg-30%Zr is approximately equivalent to that by adding 1.0%as-received Mg-30%Zr.Due to the easy and convenient operation of FSP,this study provides a new method to develop a more efficient Mg-Zr refiner.
文摘This paper summarizes a process for the preparation of Al5%Zr master alloy by the reduction of K2ZrF6 with aluminium. The reduction in grain size of aluminium by addition of known quantity of master alloy is also studied.
基金the Natural Science Foundation of Shanxi Province (2007011067)Patent Generalization Project of Shanxi Province (051025)
文摘Al-Ti-C-Y master alloy was prepared by combining SHS technique and melting-casting method. The microstructure of master alloy and its grain-refining effect on AZ31 alloy were investigated by means of OM, XRD, SEM and EDS. Experimental results indicated that the prepared master alloy consisted of α-Al, TiAl3, TiC and Al3Y phases, and exhibited good grain-refining performance of AZ31 alloy. Morphology of α-Mg changed from coarse dendritic to free equiaxed and the average grain size of α-Mg matrix reduced from the original 580 to 170 μm after adding 1.0 wt.% master alloy. The grain refining efficiency of Al-Ti-C-Y master alloy on AZ31 alloy was mainly attributed to heterogeneous nucleation of TiC particles and grain growth restriction of Al-Y compound or TiC at grain boundaries.
文摘The mechanical properties of castings depend on the grain size.There is evidence that titanium and boron(Al-5Ti-1B master alloy)affect the grain size of magnesium alloys.Here,the influence of the addition of 0-1 wt.%of Al-5Ti-1B master alloy on the grain size of AZ91 magnesium alloy was investigated.Melting of the alloy was performed in steel and corundum crucibles.To study the effect of cooling rate on grain size,cylindrical samples were cast in steel and fireclay molds.The Al-5Ti-1B master alloy addition did not change the phase composition of the AZ91 alloy.This study demonstrates that the addition of Al-5Ti-1B did not contribute to the grain refinement of the AZ91 alloy,but rather led to its coarsening for samples cast in both the steel and fireclay molds.Increasing the holding time after the addition of the Al-5Ti-1B master alloy from 15 to 110 minutes also did not lead to significant grain coarsening.The mechanical properties of the AZ91 alloy samples slightly improved after Al-5Ti-1B addition.