Conventional Akaike’s Information Criterion (AIC) for normal error models uses the maximum-likelihood estimator of error variance. Other estimators of error variance, however, can be employed for defining AIC for nor...Conventional Akaike’s Information Criterion (AIC) for normal error models uses the maximum-likelihood estimator of error variance. Other estimators of error variance, however, can be employed for defining AIC for normal error models. The maximization of the log-likelihood using an adjustable error variance in light of future data yields a revised version of AIC for normal error models. It also gives a new estimator of error variance, which will be called the “third variance”. If the model is described as a constant plus normal error, which is equivalent to fitting a normal distribution to one-dimensional data, the approximated value of the third variance is obtained by replacing (n-1) (n is the number of data) of the unbiased estimator of error variance with (n-4). The existence of the third variance is confirmed by a simple numerical simulation.展开更多
Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonl...Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonly modeled as functions of explanatory covariates, adding considerable flexibility to mark-recapture models, but also increasing the subjectivity and complexity of the modeling process. Consequently, model selection and the evaluation of covariate structure remain critical aspects of mark-recapture modeling. The difficulties involved in model selection are compounded in Cormack-Jolly-Seber models because they are composed of separate sub-models for survival and recapture probabilities, which are conceptualized independently even though their parameters are not statistically independent. The construction of models as combinations of sub-models, together with multiple potential covariates, can lead to a large model set. Although desirable, estimation of the parameters of all models may not be feasible. Strategies to search a model space and base inference on a subset of all models exist and enjoy widespread use. However, even though the methods used to search a model space can be expected to influence parameter estimation, the assessment of covariate importance, and therefore the ecological interpretation of the modeling results, the performance of these strategies has received limited investigation. We present a new strategy for searching the space of a candidate set of Cormack-Jolly-Seber models and explore its performance relative to existing strategies using computer simulation. The new strategy provides an improved assessment of the importance of covariates and covariate combinations used to model survival and recapture probabilities, while requiring only a modest increase in the number of models on which inference is based in comparison to existing techniques.展开更多
文摘Conventional Akaike’s Information Criterion (AIC) for normal error models uses the maximum-likelihood estimator of error variance. Other estimators of error variance, however, can be employed for defining AIC for normal error models. The maximization of the log-likelihood using an adjustable error variance in light of future data yields a revised version of AIC for normal error models. It also gives a new estimator of error variance, which will be called the “third variance”. If the model is described as a constant plus normal error, which is equivalent to fitting a normal distribution to one-dimensional data, the approximated value of the third variance is obtained by replacing (n-1) (n is the number of data) of the unbiased estimator of error variance with (n-4). The existence of the third variance is confirmed by a simple numerical simulation.
文摘Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonly modeled as functions of explanatory covariates, adding considerable flexibility to mark-recapture models, but also increasing the subjectivity and complexity of the modeling process. Consequently, model selection and the evaluation of covariate structure remain critical aspects of mark-recapture modeling. The difficulties involved in model selection are compounded in Cormack-Jolly-Seber models because they are composed of separate sub-models for survival and recapture probabilities, which are conceptualized independently even though their parameters are not statistically independent. The construction of models as combinations of sub-models, together with multiple potential covariates, can lead to a large model set. Although desirable, estimation of the parameters of all models may not be feasible. Strategies to search a model space and base inference on a subset of all models exist and enjoy widespread use. However, even though the methods used to search a model space can be expected to influence parameter estimation, the assessment of covariate importance, and therefore the ecological interpretation of the modeling results, the performance of these strategies has received limited investigation. We present a new strategy for searching the space of a candidate set of Cormack-Jolly-Seber models and explore its performance relative to existing strategies using computer simulation. The new strategy provides an improved assessment of the importance of covariates and covariate combinations used to model survival and recapture probabilities, while requiring only a modest increase in the number of models on which inference is based in comparison to existing techniques.