期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
飞行器航迹角系统有限时间跟踪自适应迭代学习控制 被引量:1
1
作者 张春丽 田旭 严雷 《西安理工大学学报》 CAS 北大核心 2023年第1期89-95,共7页
针对不确定飞行器航迹角系统航迹倾角的跟踪控制问题,给出了有限时间跟踪控制的自适应迭代学习控制(AILC)方法。通过控制输入量舵面偏角来控制飞行器航迹倾角,使得飞行器航迹倾角的跟踪误差在有限时间内收敛于零,其中引入了典型的收敛... 针对不确定飞行器航迹角系统航迹倾角的跟踪控制问题,给出了有限时间跟踪控制的自适应迭代学习控制(AILC)方法。通过控制输入量舵面偏角来控制飞行器航迹倾角,使得飞行器航迹倾角的跟踪误差在有限时间内收敛于零,其中引入了典型的收敛级数来处理模型中的不确定部分,并利用李雅普诺夫(Lyapunov)稳定性定理给出了严格的稳定性分析。最后通过数值仿真验证了该方法的有效性。 展开更多
关键词 飞行器航迹角 有限时间跟踪 自适应迭代学习控制 Lyapunov稳定
下载PDF
永磁同步电机伺服系统自适应迭代学习控制 被引量:23
2
作者 朱国昕 雷鸣凯 赵希梅 《沈阳工业大学学报》 EI CAS 北大核心 2018年第1期6-11,共6页
针对执行重复性任务的永磁同步电机伺服系统,由于参数摄动、随机扰动等不确定因素影响导致的跟踪精度下降,误差发散问题,提出一种自适应迭代学习控制方法.该方法在PD型反馈控制的基础上增加自适应迭代项对控制律中未知参数进行迭代学习... 针对执行重复性任务的永磁同步电机伺服系统,由于参数摄动、随机扰动等不确定因素影响导致的跟踪精度下降,误差发散问题,提出一种自适应迭代学习控制方法.该方法在PD型反馈控制的基础上增加自适应迭代项对控制律中未知参数进行迭代学习,减少不确定因素对系统性能的影响.建立了含有不确定性扰动的系统模型和PMSM自适应迭代学习控制系统,并且基于Lyapunov稳定性理论,分析了该方案的收敛性.结果表明,与传统PD型ILC相比,该方法收敛速度更快,跟踪精度更高,可有效改善系统的性能. 展开更多
关键词 永磁同步电机 迭代学习控制 自适应迭代学习控制 反馈控制 参数摄动 跟踪误差 收敛速度 伺服系统
下载PDF
Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying Delays 被引量:12
3
作者 Wei-Sheng Chen Rui-Hong Li Jing Li 《International Journal of Automation and computing》 EI 2010年第4期438-446,共9页
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (... An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper. 展开更多
关键词 Adaptive iterative learning control ailc nonlinearly parameterized systems time-varying delays Lyapunov- Krasovskii-like composite energy function.
下载PDF
An Exploration on Adaptive Iterative Learning Control for a Class of Commensurate High-order Uncertain Nonlinear Fractional Order Systems 被引量:4
4
作者 Jianming Wei Youan Zhang Hu Bao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期618-627,共10页
This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commens... This paper explores the adaptive iterative learning control method in the control of fractional order systems for the first time. An adaptive iterative learning control(AILC) scheme is presented for a class of commensurate high-order uncertain nonlinear fractional order systems in the presence of disturbance.To facilitate the controller design, a sliding mode surface of tracking errors is designed by using sufficient conditions of linear fractional order systems. To relax the assumption of the identical initial condition in iterative learning control(ILC), a new boundary layer function is proposed by employing MittagLeffler function. The uncertainty in the system is compensated for by utilizing radial basis function neural network. Fractional order differential type updating laws and difference type learning law are designed to estimate unknown constant parameters and time-varying parameter, respectively. The hyperbolic tangent function and a convergent series sequence are used to design robust control term for neural network approximation error and bounded disturbance, simultaneously guaranteeing the learning convergence along iteration. The system output is proved to converge to a small neighborhood of the desired trajectory by constructing Lyapnov-like composite energy function(CEF)containing new integral type Lyapunov function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. 展开更多
关键词 Index Terms-Adaptive iterative learning control ailc boundary layer function composite energy function (CEF) frac-tional order differential learning law fractional order nonlinearsystems Mittag-Leffler function.
下载PDF
基于终态滑模的机械臂自适应迭代学习控制
5
作者 胡云安 韦建明 杨秀霞 《海军航空工程学院学报》 2011年第6期606-610,616,共6页
针对带未知参数且执行重复任务的机械臂,提出一种自适应迭代学习控制算法。为了克服因重置精度低带来的重置误差,引入了终态滑模和初始状态修正吸引子,实现了跟踪误差在有限时间收敛于0,并通过迭代轴上的自适应算法来调节控制器参... 针对带未知参数且执行重复任务的机械臂,提出一种自适应迭代学习控制算法。为了克服因重置精度低带来的重置误差,引入了终态滑模和初始状态修正吸引子,实现了跟踪误差在有限时间收敛于0,并通过迭代轴上的自适应算法来调节控制器参数。理论证明了跟踪误差的收敛性和系统中所有信号的有界性,仿真结果验证了算法的有效性。 展开更多
关键词 自适应迭代学习控制 机械臂 重置误差 终态滑模
下载PDF
冗余自由度仿人机械臂自适应迭代学习控制研究 被引量:1
6
作者 朱海燕 吴根忠 《机械工程与自动化》 2012年第5期158-160,共3页
在深入研究自适应迭代学习控制理论、七自由度乒乓球机械臂动力学模型及轨迹规划的基础上,提出将改进后的自适应迭代学习控制算法运用到带有重复时变干扰的冗余自由度机械臂上。该控制系统旨在实现两大目标:一是使乒乓球机械臂准确快速... 在深入研究自适应迭代学习控制理论、七自由度乒乓球机械臂动力学模型及轨迹规划的基础上,提出将改进后的自适应迭代学习控制算法运用到带有重复时变干扰的冗余自由度机械臂上。该控制系统旨在实现两大目标:一是使乒乓球机械臂准确快速地跟踪参考轨迹并在末点达到指定的击球速度;二是引入饱和函数减小输入转矩的抖振。Lyapunov理论分析及MATLAB仿真验证了整个控制系统的有效性:当迭代次数增加时,跟踪误差关于有限时间区间内一致收敛到零;加快迭代学习的收敛速度,并消除抖振。 展开更多
关键词 七自由度 乒乓球机械臂 自适应迭代学习控制 饱和函数
下载PDF
具有快变时滞的1阶非线性参数化系统自适应迭代学习控制 被引量:1
7
作者 胡云安 韦建明 《信息与控制》 CSCD 北大核心 2012年第6期747-751,759,共6页
针对一类具有未知快变时滞的1阶非线性参数化系统,提出了一种自适应迭代学习控制方案.为克服未知快变时滞不确定项给控制器设计带来的困难,提出了一种新型的指数型Lyapunov-Krasovskii泛函.通过对系统进行参数化,设计了控制器和未知时... 针对一类具有未知快变时滞的1阶非线性参数化系统,提出了一种自适应迭代学习控制方案.为克服未知快变时滞不确定项给控制器设计带来的困难,提出了一种新型的指数型Lyapunov-Krasovskii泛函.通过对系统进行参数化,设计了控制器和未知时变参数的自适应迭代学习律.通过构造一个指数型Lyapunov-Krasovskii复合能量函数,证明了所有信号的有界性和跟踪误差的收敛性.最后通过仿真算例验证了所提出算法的有效性. 展开更多
关键词 快变时滞 指数型Lyapunov-Krasovskii泛函 自适应迭代学习控制(ailc)
原文传递
Observer-Based Adaptive Neural Iterative Learning Control for a Class of Time-Varying Nonlinear Systems
8
作者 韦建明 张友安 刘京茂 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第3期303-312,共10页
In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-doma... In this paper an adaptive iterative learning control scheme is presented for the output tracking of a class of nonlinear systems. An observer is designed to estimate the tracking errors. A mixed time domain and s-domain representation is constructed to derive an error model with relative degree one for our purpose. And time-varying radial basis function neural network is employed to deal with system uncertainty. A new signal is constructed by using a first-order filter, which removes the requirement of strict positive real(SPR) condition and identical initial condition of iterative learning control. Based on property of hyperbolic tangent function,the system tracing error is proved to converge to the origin as the iteration tends to infinity by constructing Lyapunov-like composite energy function, while keeping all the closed-loop signals bounded. Finally, a simulation example is presented to verify the effectiveness of the proposed approach. 展开更多
关键词 adaptive iterative learning control(ailc) time-varying nonlinear systems output tracking OBSERVER FILTER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部