Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t...Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.展开更多
Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a nov...Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation.Results: By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4(SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6(TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway.Conclusions: MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality.展开更多
BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates dem...BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates demethylated.Abnormal regulation of LSD1 is closely related to the occurrence and development of gastric cancer.The change of LSD1 expression level plays an important role in the proliferation and metastasis of gastric cancer cells.The study of its function and mechanism may provide a theoretical basis for early diagnosis and targeted therapy of gastric cancer.AIM To investigate the effect of downregulation of lysine-specific demethylase 1(LSD1)expression on proliferation and invasion of gastric cancer cells and the possible regulatory mechanisms of the VEGF-C/PI3K/AKT signaling pathway.METHODS The LSD1-specific short hairpin RNA(shRNA)interference plasmid was transiently transfected,and expression of LSD1 was downregulated.The cell proliferation ability of LSD1 was observed by CCK-8 assay after downregulating expression of LSD1.Transwell invasion assay was used to observe the change of cell invasion ability after downregulating expression of LSD1.Expression of phosphorylated phosphoinositide 3-kinase(p-PI3K),PI3K,p-AKT,AKT,vascular endothelial growth factor receptor(VEGFR)-3,matrix metalloproteinase(MMP)-2 and MMP-9 in each group was detected by Western blotting.RESULTS The cell proliferation ability of transiently transfected LSD1-shRNA interference plasmid group was significantly lower than that of the control group(P<0.05).Transwell invasion assay showed that the number of cells across the membrane of the LSD1-shRNA transfection group(238.451±5.216)was significantly lower than that of the control group(49.268±6.984)(P<0.01).Western blotting showed that expression level of VEGF-C,p-PI3K,PI3K,p-AKT,AKT,VEGFR-3,MMP-2 and MMP-9 in the LSD1-shRNA group was significantly lower than that in the control group(P<0.05).CONCLUSION Downregulation of LSD1 expression inhibits metastatic potential of gastric cancer cells,and VEGF-C-mediated activation of PI3K/AKT signaling pathway,which may be an important mechanism for inhibiting lymph node metastasis in gastric cancer cells.展开更多
Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology me...Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology method to screen the active compoundsand candidate targets,construct the protein-protein-interaction network,and ingredients-targets-pathways network was constructed for topological analysis to identify core targets and main ingredients.To find the possible signaling pathways,enrichment analysis was performed.Further,a model of insulin resistance in HL-7702 cells was established to verify the impact of SMW and the regulatory processes.Results:An overall of 63 active components and 151 candidate targets were obtained,in which flavonoids were the main ingredients.Enrichment analysis indicated that the PI3K-Akt signaling pathway was the potential pathway regulated by SMW in obesity-associated insulin resistance treatment.The result showed that SMW could significantly ameliorate insulin sensitivity,increase glucose synthesis and glucose utilization and reduce intracellular lipids accumulation in hepatocytes.Also,SMW inhibited diacylglycerols accumulation-induced PKCεactivity and decreased its translocation to the membrane.Conclusion:SMW ameliorated obesity-associated insulin resistance through PKCε/IRS-1/PI3K/Akt signaling axis in hepatocytes,providing a new strategy for metabolic disease treatment.展开更多
AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells. METHODS Western blotting was used to d...AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells. METHODS Western blotting was used to detect the expression of CXCL12 and CXCL6 in colon cancer cells and stromal cells. The co-operative effects of CXCL12 and CXCL6 on proliferation and invasion of colon cancer cells and human umbilical vein endothelial cells(HUVECs) were determined by enzyme-linked immunosorbent assay,and proliferation and invasion assays. The angiogenesis of HUVECs through interaction with cancer cells and stromal cells was examined by angiogenesis assay. We eventually investigated activation of PI3K/Akt/m TOR signaling by CXCL12 involved in the metastatic process of colon cancer.RESULTS CXCL12 was expressed in DLD-1 cancer cells and fibroblasts. The secretion level of CXCL6 by colon cancer cells and HUVECs were significantly promoted by fibroblasts derived from CXCL12. CXCL6 and CXCL2 could significantly enhance HUVEC proliferation and migration(P < 0.01). CXCL6 and CXCL2 enhanced angiogenesis by HUVECs when cultured with fibroblast cells and colon cancer cells(P < 0.01). CXCL12 also enhanced the invasion of colon cancer cells. Stromal cell-derived CXCL12 promoted the secretion level of CXCL6 and co-operatively promoted metastasis of colon carcinoma through activation of the PI3K/Akt/m TOR pathway.CONCLUSION Fibroblast-derived CXCL12 enhanced the CXCL6 secretion of colon cancer cells,and both CXCL12 and CXCL6 co-operatively regulated the metastasis via the PI3K/Akt/m TOR signaling pathway. Blocking this pathway may be a potential anti-metastatic therapeutic target for patients with colon cancer.展开更多
AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eE...AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.展开更多
BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional ...BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional Chinese medicine monomer with a wide range of pharmacological properties,has attracted considerable attention for its antitumor activity.AIM To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action.METHODS The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses.The effect of scoparone on pancreatic cancer cell proliferation,migration,invasion,cell cycle,and apoptosis was detected in vitro.The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction(qRT-PCR),and the molecular mechanism was analyzed using Western blot.The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry.RESULTS The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms,including SwissTargetPrediction,STITCH,GeneCards,CTD,STRING,WebGestalt,Cytoscape,and Gepia;AKT1 was confirmed using qRT-PCR to be the hub gene.Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2μmol/L and 209.1μmol/L,respectively.Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells.Additionally,flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis.Scoparone also increased the expression levels of Bax and cleaved caspase-3,decreased the levels of MMP9 and Bcl-2,and suppressed the phosphorylation of Akt without affecting total PI3K and Akt.Moreover,compared with the control group,xenograft tumors,in the 200μmol/L scoparone treatment group,were smaller in volume and lighter in weight,and the percentages of Ki65-and PCNA-positive cells were decreased.CONCLUSION Our findings indicate that scoparone inhibits pancreatic cancer cell proliferation in vitro and in vivo,inhibits migration and invasion,and induces cycle arrest and apoptosis in vitro through the PI3K/Akt signaling pathway.展开更多
Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of ba...Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of baicalin in a neonatal rat model of hypoxic-ischemic encephalopathy.Seven-day-old pups underwent left common carotid artery ligation followed by hypoxia(8% oxygen at 37°C) for 2 hours,before being injected with baicalin(120 mg/kg intraperitoneally) and examined 24 hours later.Baicalin effectively reduced cerebral infarct volume and neuronal loss,inhibited apoptosis,and upregulated the expression of p-Akt and glutamate transporter 1.Intracerebroventricular injection of the phosphoinositide 3-kinase/protein kinase B(PI3 K/Akt) inhibitor LY294002 30 minutes before injury blocked the effect of baicalin on p-Akt and glutamate transporter 1,and weakened the associated neuroprotective effect.Our findings provide the first evidence,to our knowledge that baicalin can protect neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the PI3 K/Akt signaling pathway.展开更多
Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in...Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice(Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1(HO-1), nuclear factor erythroid 2-related factor 2(Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA(20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor(10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3 K/Akt signaling pathway inhibitor LY294002(10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3 K/Akt signaling pathway.展开更多
Objective:The aim of this study was to investigate the mechanism of acupotomology(Apo)in the prevention of articular cartilage destruction via the promotion of chondrocyte proliferation and chondrocyte expression of c...Objective:The aim of this study was to investigate the mechanism of acupotomology(Apo)in the prevention of articular cartilage destruction via the promotion of chondrocyte proliferation and chondrocyte expression of cell cycle regulators,CyclinD1,CDK4 and CDK6 in a rabbit knee osteoarthritis(KOA)model.Methods:Twenty-eight rabbits were randomly divided into a control group,an OA(osteoarthritis)model group,an Apo(acupotomology)group and EA(electro-acupuncture)group(n Z 7).Improved Videman’s method was used to induce a rabbit model of KOA over 6 weeks.One week later,acupotomy and electro-acupuncture therapy was applied to animals in the respective groups and treatment lasted 4 weeks.Following these treatments,quantitative real-time PCR,immunohistochemical staining and western blotting were performed to assess the mRNA and protein levels of cell cycle regulators CyclinD1(Cell cycle protein D1),CDK4(Cyclin-dependent kinase 4)and CDK6(Cyclin-dependent kinase 6).Ethology measures and knee morphology were also compared among groups.Results:The Lequesne MG index score of morphology was increased(P<.01),and the passive range of motion(PROM)and the mRNA and protein levels of CyclinD1,CDK4,and CDK6 were significantly decreased(P<.01)in the OA model compared with the control group.The Lequesne MG index score and the morphology score were decreased in the Apo and EA group compared with the OA model group(P<.05 or P<.01),while the mRNA levels of CyclinD1,CDK4,and CDK6,and the protein levels of CDK4 were increased in the Apo and EA groups compared with the OA model group(P<.05 or P<.01).The PROM,and the protein levels of CyclinD1 and CDK6 were increased(P<.05)in the Apo group compared with the OA model group,while the PROM and the protein levels of CyclinD1 and CDK6 in the EA group were not significantly different(P>.05).Compared with the EA group,the morphology score was decreased in Apo group(P<.05).Conclusions:The mRNA levels of CyclinD1 and CDK4,and the protein level of CDK4 in chondrocytes are regulate by both Apo and EA.Apo is more effective than EA in regulating the protein levels of CyclinD1 and CDK6.According to the observed changes in morphology and cytokine levels,acupotomy can promote chondrocyte proliferation and can alleviate the destruction of articular cartilage in a model of KOA.展开更多
The purpose of this study was to explore the mechanism of Solanine disrupting energy metabolism in human renal cancer ACHN cells and to clarify its target. The specific method was to culture human renal cancer ACHN ce...The purpose of this study was to explore the mechanism of Solanine disrupting energy metabolism in human renal cancer ACHN cells and to clarify its target. The specific method was to culture human renal cancer ACHN cell lines, and to intervene with Solanine of high, medium and low concentrations. The content of ATP in cells was measured by ELISA method. The expression of HIF-1α protein and the expression of PI3K, AKT, p-PI3K, p-AKT in PI3K/AKT pathway were detected by Western blotting. The results showed that compared with the control group, the relative expression of p-PI3K and p-AKT showed a downward trend with the increase of Solanine concentration (P < 0.05), while the relative expression of PI3K and AKT showed no significant change (P > 0.05). In addition, the relative expression of HIF-1α also showed a downward trend (P < 0.05). According to the above results, it is suggested that Solanine can significantly inhibit the energy metabolism of renal cancer cells, the main mechanism of which is the down-regulation of HI-1αf downstream of the PI3K/Akt pathway by inhibiting the phosphorylation process of PI3K/p-PI3K and Akt/p-Akt.展开更多
目的:探讨抑制哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路在高体积分数氧(高氧)致SD幼鼠肺损伤时对磷酸化AKT1(p-AKT1)分子的影响和意义。方法:72只SD幼鼠(3周龄)随机分为空气+生理盐水组、高氧+生理盐水组...目的:探讨抑制哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路在高体积分数氧(高氧)致SD幼鼠肺损伤时对磷酸化AKT1(p-AKT1)分子的影响和意义。方法:72只SD幼鼠(3周龄)随机分为空气+生理盐水组、高氧+生理盐水组、高氧+OSI-027组及高氧+雷帕霉素组(n=18),分别构建动物模型。高氧选择90%氧气持续干预,生理盐水、OSI-027和雷帕霉素干预分别在观察期第1、3、6、8、10和13天时经腹腔注射给药。在造模第3、7和14天时取各组幼鼠进行体重测量、肺湿干重比(wet/drg weight ratio,W/D)计算、肺组织病理学检查、肺泡间隔宽度测定和肺损伤评分,肺组织免疫组化和Western blot检测磷酸化S6K1(p-S6K1)和p-AKT1的分布与水平。结果:与空气组比较,高氧组幼鼠体重明显下降(P<0.05),肺损伤急性期肺W/D增高(P<0.05),肺泡间隔宽度及肺损伤评分明显增加(P<0.05),肺组织p-S6K1阳性细胞增多(P<0.05),肺组织p-AKT1阳性细胞减少(P<0.05),p-S6K1蛋白显著升高(P<0.01),p-AKT1蛋白明显减低(P<0.01);与高氧组比较,高氧+OSI-027组的肺组织损伤减轻,肺组织p-S6K1阳性细胞减少(P<0.05),p-AKT1阳性细胞增多(P<0.05),p-S6K1蛋白水平显著降低(P<0.05),p-AKT1蛋白水平增加(P<0.05);高氧+雷帕霉素组的肺损伤进一步加重(P<0.05),p-S6K1阳性细胞减少(P<0.05),p-AKT1阳性细胞增加(P<0.05),p-S6K1蛋白水平显著降低(P<0.05),p-AKT1蛋白水平显著增加(P<0.05)。与高氧+雷帕霉素组比较,高氧+OSI-027组的肺组织损伤减轻(P<0.05),肺组织p-AKT1阳性细胞减少(P<0.05),p-AKT1蛋白水平降低(P<0.05)。结论:p-AKT1参与了高氧肺损伤的发生发展,其调控机制可能与抑制mTOR信号通路的活化有关。高氧肺损伤时,p-AKT1蛋白水平下降,mTOR抑制剂能增加p-AKT1蛋白水平,但只有mTORC1/2双重抑制剂OSI-027能减轻高氧所致SD幼鼠的肺损伤及纤维化。展开更多
The mammalian target of rapamycin (mTOR) has drawn growth control and its involvement in human tumorigenesis much attention recently because of its essential role in cell Great endeavors have been made to elucidate ...The mammalian target of rapamycin (mTOR) has drawn growth control and its involvement in human tumorigenesis much attention recently because of its essential role in cell Great endeavors have been made to elucidate the functions and regulation of mTOR in the past decade. The current prevailing view is that mTOR regulates many fundamental biological processes, such as cell growth and survival, by integrating both intracellular and extracellular signals, including growth factors, nutrients, energy levels, and cellular stress. The significance of roTOR has been highlighted most recently by the identification of mTOR-associated proteins. Amazingly, when bound to different proteins, mTOR forms distinctive complexes with very different physiological functions. These findings not only expand the roles that mTOR plays in cells but also further complicate the regulation network. Thus, it is now even more critical that we precisely understand the underlying molecular mechanisms in order to directly guide the development and usage of anti-cancer drugs targeting the mTOR signaling pathway. In this review, we will discuss different mTOR-associated proteins, the regulation of mTOR complexes, and the consequences of mTOR dysregulation under pathophysiological conditions.展开更多
Akt/mTOR/p70S6K1 signaling pathway plays an important role in the pathogenesis of cancer and diabetes.Macrophages and lymphocytes are involved in the pathogenesis of diabetes,diabetic atherosclerosis,formation of insu...Akt/mTOR/p70S6K1 signaling pathway plays an important role in the pathogenesis of cancer and diabetes.Macrophages and lymphocytes are involved in the pathogenesis of diabetes,diabetic atherosclerosis,formation of insulin resistance as well as immune response to cancer and tumor maintenance.The aim of the study was to determine the Akt activation by mTORC2 in peripheral blood mononuclear cell(PBMC)of patients with type 2 diabetes and cancer.The following groups were studied:control group,patients with type 2 diabetes,cancer patients and patients with both cancer and diabetes.The amounts of phospho-Akt(р-S473)and phospho-p70S6K1(p-T389)were determined using ELISA kits.The amount of phosphorylated Akt significantly increases in PBMC of patients with cancer.There was no effect in PBMC from patients with type 2 diabetes and significant decrease in the amount of phospho-Akt in PBMC of the patients group both with cancer and diabetes.p70S6K1 activation was observed in PBMC of the groups 2 and 3 patients.Thus,chronic diseases such as type 2 diabetes and cancer can affect the signaling mechanisms in blood cells.The state of Akt phosphorylation in leukocytes can indicate the activity of mTORC1 and its substrates,which may be important for the evaluation of the pathological process and the efficacy of the drugs.展开更多
基金supported by the National Natural Science Foundation of China,No.81971097(to JY)。
文摘Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
基金supported by grants from the National Natural Science Foundation (31872979, 31572366)the National Key Research and Development Program of China (2017YFD0502002)the National Basic Research Programs of China (2015CB943102)。
文摘Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation.Results: By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4(SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6(TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway.Conclusions: MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality.
基金Supported by Doctoral Special Research Fund of Qiqihar Medical College,No.QY2016B-06
文摘BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates demethylated.Abnormal regulation of LSD1 is closely related to the occurrence and development of gastric cancer.The change of LSD1 expression level plays an important role in the proliferation and metastasis of gastric cancer cells.The study of its function and mechanism may provide a theoretical basis for early diagnosis and targeted therapy of gastric cancer.AIM To investigate the effect of downregulation of lysine-specific demethylase 1(LSD1)expression on proliferation and invasion of gastric cancer cells and the possible regulatory mechanisms of the VEGF-C/PI3K/AKT signaling pathway.METHODS The LSD1-specific short hairpin RNA(shRNA)interference plasmid was transiently transfected,and expression of LSD1 was downregulated.The cell proliferation ability of LSD1 was observed by CCK-8 assay after downregulating expression of LSD1.Transwell invasion assay was used to observe the change of cell invasion ability after downregulating expression of LSD1.Expression of phosphorylated phosphoinositide 3-kinase(p-PI3K),PI3K,p-AKT,AKT,vascular endothelial growth factor receptor(VEGFR)-3,matrix metalloproteinase(MMP)-2 and MMP-9 in each group was detected by Western blotting.RESULTS The cell proliferation ability of transiently transfected LSD1-shRNA interference plasmid group was significantly lower than that of the control group(P<0.05).Transwell invasion assay showed that the number of cells across the membrane of the LSD1-shRNA transfection group(238.451±5.216)was significantly lower than that of the control group(49.268±6.984)(P<0.01).Western blotting showed that expression level of VEGF-C,p-PI3K,PI3K,p-AKT,AKT,VEGFR-3,MMP-2 and MMP-9 in the LSD1-shRNA group was significantly lower than that in the control group(P<0.05).CONCLUSION Downregulation of LSD1 expression inhibits metastatic potential of gastric cancer cells,and VEGF-C-mediated activation of PI3K/AKT signaling pathway,which may be an important mechanism for inhibiting lymph node metastasis in gastric cancer cells.
基金supported by the National Natural Science Foundation of China(81903871)Natural Science Foundation of Jiangsu Province(BK20190565)+1 种基金Fundamental Research Funds for the Central Universities(2632021ZD16)Zhenjiang City 2022 Science and Technology Innovation Fund(SH2022084).
文摘Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology method to screen the active compoundsand candidate targets,construct the protein-protein-interaction network,and ingredients-targets-pathways network was constructed for topological analysis to identify core targets and main ingredients.To find the possible signaling pathways,enrichment analysis was performed.Further,a model of insulin resistance in HL-7702 cells was established to verify the impact of SMW and the regulatory processes.Results:An overall of 63 active components and 151 candidate targets were obtained,in which flavonoids were the main ingredients.Enrichment analysis indicated that the PI3K-Akt signaling pathway was the potential pathway regulated by SMW in obesity-associated insulin resistance treatment.The result showed that SMW could significantly ameliorate insulin sensitivity,increase glucose synthesis and glucose utilization and reduce intracellular lipids accumulation in hepatocytes.Also,SMW inhibited diacylglycerols accumulation-induced PKCεactivity and decreased its translocation to the membrane.Conclusion:SMW ameliorated obesity-associated insulin resistance through PKCε/IRS-1/PI3K/Akt signaling axis in hepatocytes,providing a new strategy for metabolic disease treatment.
基金Supported by National Natural Science Foundation of China,No.81260325(to Ma JC)
文摘AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells. METHODS Western blotting was used to detect the expression of CXCL12 and CXCL6 in colon cancer cells and stromal cells. The co-operative effects of CXCL12 and CXCL6 on proliferation and invasion of colon cancer cells and human umbilical vein endothelial cells(HUVECs) were determined by enzyme-linked immunosorbent assay,and proliferation and invasion assays. The angiogenesis of HUVECs through interaction with cancer cells and stromal cells was examined by angiogenesis assay. We eventually investigated activation of PI3K/Akt/m TOR signaling by CXCL12 involved in the metastatic process of colon cancer.RESULTS CXCL12 was expressed in DLD-1 cancer cells and fibroblasts. The secretion level of CXCL6 by colon cancer cells and HUVECs were significantly promoted by fibroblasts derived from CXCL12. CXCL6 and CXCL2 could significantly enhance HUVEC proliferation and migration(P < 0.01). CXCL6 and CXCL2 enhanced angiogenesis by HUVECs when cultured with fibroblast cells and colon cancer cells(P < 0.01). CXCL12 also enhanced the invasion of colon cancer cells. Stromal cell-derived CXCL12 promoted the secretion level of CXCL6 and co-operatively promoted metastasis of colon carcinoma through activation of the PI3K/Akt/m TOR pathway.CONCLUSION Fibroblast-derived CXCL12 enhanced the CXCL6 secretion of colon cancer cells,and both CXCL12 and CXCL6 co-operatively regulated the metastasis via the PI3K/Akt/m TOR signaling pathway. Blocking this pathway may be a potential anti-metastatic therapeutic target for patients with colon cancer.
基金Supported by the Middle-Young Age Backbone Talent Cultivation Program of Fujian Health System,No.2013-ZQNJC-2Key Projects of Science and Technology Plan of Fujian Province,No.2014Y0009
文摘AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.
基金Supported by National Natural Science Foundation of China,No.817706555Special Project from the Central Government of Liaoning Province,No.2018107003+6 种基金Liaoning Province Medical Science and Technology Achievements Transformation Foundation,No.2018225120China Postdoctoral Science Foundation,No.2020M670101ZXDoctoral Scientific Research Foundation of Liaoning Province,No.2019-BS-276Science and Technology Program of Shenyang,No.19-112-4-103Youth Support Foundation of China Medical University,No.QGZ2018058Scientific Fund of Shengjing Hospital,No.201801345 Talent Project of Shengjing Hospital,No.52-30C.
文摘BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional Chinese medicine monomer with a wide range of pharmacological properties,has attracted considerable attention for its antitumor activity.AIM To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action.METHODS The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses.The effect of scoparone on pancreatic cancer cell proliferation,migration,invasion,cell cycle,and apoptosis was detected in vitro.The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction(qRT-PCR),and the molecular mechanism was analyzed using Western blot.The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry.RESULTS The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms,including SwissTargetPrediction,STITCH,GeneCards,CTD,STRING,WebGestalt,Cytoscape,and Gepia;AKT1 was confirmed using qRT-PCR to be the hub gene.Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2μmol/L and 209.1μmol/L,respectively.Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells.Additionally,flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis.Scoparone also increased the expression levels of Bax and cleaved caspase-3,decreased the levels of MMP9 and Bcl-2,and suppressed the phosphorylation of Akt without affecting total PI3K and Akt.Moreover,compared with the control group,xenograft tumors,in the 200μmol/L scoparone treatment group,were smaller in volume and lighter in weight,and the percentages of Ki65-and PCNA-positive cells were decreased.CONCLUSION Our findings indicate that scoparone inhibits pancreatic cancer cell proliferation in vitro and in vivo,inhibits migration and invasion,and induces cycle arrest and apoptosis in vitro through the PI3K/Akt signaling pathway.
基金supported by the Chinese Medicine Research Foundation of Jiangxi Provincial Health Department of China,No.2013A040the Science and Technology Program of Jiangxi Provincial Health Department of China,No.20123023the Science and Technology Support Program of Jiangxi Province of China,No.2009BSB11209
文摘Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of baicalin in a neonatal rat model of hypoxic-ischemic encephalopathy.Seven-day-old pups underwent left common carotid artery ligation followed by hypoxia(8% oxygen at 37°C) for 2 hours,before being injected with baicalin(120 mg/kg intraperitoneally) and examined 24 hours later.Baicalin effectively reduced cerebral infarct volume and neuronal loss,inhibited apoptosis,and upregulated the expression of p-Akt and glutamate transporter 1.Intracerebroventricular injection of the phosphoinositide 3-kinase/protein kinase B(PI3 K/Akt) inhibitor LY294002 30 minutes before injury blocked the effect of baicalin on p-Akt and glutamate transporter 1,and weakened the associated neuroprotective effect.Our findings provide the first evidence,to our knowledge that baicalin can protect neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the PI3 K/Akt signaling pathway.
基金supported by the National Natural Science Foundation of China,No.81571292(to XJZ)、81601152(to YY)the Natural Science Foundation of Hebei Province of China,No.H2017206338(to RC)
文摘Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice(Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1(HO-1), nuclear factor erythroid 2-related factor 2(Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA(20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor(10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3 K/Akt signaling pathway inhibitor LY294002(10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3 K/Akt signaling pathway.
基金the National Natural Science Foundation of China program(No.81574067).
文摘Objective:The aim of this study was to investigate the mechanism of acupotomology(Apo)in the prevention of articular cartilage destruction via the promotion of chondrocyte proliferation and chondrocyte expression of cell cycle regulators,CyclinD1,CDK4 and CDK6 in a rabbit knee osteoarthritis(KOA)model.Methods:Twenty-eight rabbits were randomly divided into a control group,an OA(osteoarthritis)model group,an Apo(acupotomology)group and EA(electro-acupuncture)group(n Z 7).Improved Videman’s method was used to induce a rabbit model of KOA over 6 weeks.One week later,acupotomy and electro-acupuncture therapy was applied to animals in the respective groups and treatment lasted 4 weeks.Following these treatments,quantitative real-time PCR,immunohistochemical staining and western blotting were performed to assess the mRNA and protein levels of cell cycle regulators CyclinD1(Cell cycle protein D1),CDK4(Cyclin-dependent kinase 4)and CDK6(Cyclin-dependent kinase 6).Ethology measures and knee morphology were also compared among groups.Results:The Lequesne MG index score of morphology was increased(P<.01),and the passive range of motion(PROM)and the mRNA and protein levels of CyclinD1,CDK4,and CDK6 were significantly decreased(P<.01)in the OA model compared with the control group.The Lequesne MG index score and the morphology score were decreased in the Apo and EA group compared with the OA model group(P<.05 or P<.01),while the mRNA levels of CyclinD1,CDK4,and CDK6,and the protein levels of CDK4 were increased in the Apo and EA groups compared with the OA model group(P<.05 or P<.01).The PROM,and the protein levels of CyclinD1 and CDK6 were increased(P<.05)in the Apo group compared with the OA model group,while the PROM and the protein levels of CyclinD1 and CDK6 in the EA group were not significantly different(P>.05).Compared with the EA group,the morphology score was decreased in Apo group(P<.05).Conclusions:The mRNA levels of CyclinD1 and CDK4,and the protein level of CDK4 in chondrocytes are regulate by both Apo and EA.Apo is more effective than EA in regulating the protein levels of CyclinD1 and CDK6.According to the observed changes in morphology and cytokine levels,acupotomy can promote chondrocyte proliferation and can alleviate the destruction of articular cartilage in a model of KOA.
文摘The purpose of this study was to explore the mechanism of Solanine disrupting energy metabolism in human renal cancer ACHN cells and to clarify its target. The specific method was to culture human renal cancer ACHN cell lines, and to intervene with Solanine of high, medium and low concentrations. The content of ATP in cells was measured by ELISA method. The expression of HIF-1α protein and the expression of PI3K, AKT, p-PI3K, p-AKT in PI3K/AKT pathway were detected by Western blotting. The results showed that compared with the control group, the relative expression of p-PI3K and p-AKT showed a downward trend with the increase of Solanine concentration (P < 0.05), while the relative expression of PI3K and AKT showed no significant change (P > 0.05). In addition, the relative expression of HIF-1α also showed a downward trend (P < 0.05). According to the above results, it is suggested that Solanine can significantly inhibit the energy metabolism of renal cancer cells, the main mechanism of which is the down-regulation of HI-1αf downstream of the PI3K/Akt pathway by inhibiting the phosphorylation process of PI3K/p-PI3K and Akt/p-Akt.
文摘The mammalian target of rapamycin (mTOR) has drawn growth control and its involvement in human tumorigenesis much attention recently because of its essential role in cell Great endeavors have been made to elucidate the functions and regulation of mTOR in the past decade. The current prevailing view is that mTOR regulates many fundamental biological processes, such as cell growth and survival, by integrating both intracellular and extracellular signals, including growth factors, nutrients, energy levels, and cellular stress. The significance of roTOR has been highlighted most recently by the identification of mTOR-associated proteins. Amazingly, when bound to different proteins, mTOR forms distinctive complexes with very different physiological functions. These findings not only expand the roles that mTOR plays in cells but also further complicate the regulation network. Thus, it is now even more critical that we precisely understand the underlying molecular mechanisms in order to directly guide the development and usage of anti-cancer drugs targeting the mTOR signaling pathway. In this review, we will discuss different mTOR-associated proteins, the regulation of mTOR complexes, and the consequences of mTOR dysregulation under pathophysiological conditions.
文摘Akt/mTOR/p70S6K1 signaling pathway plays an important role in the pathogenesis of cancer and diabetes.Macrophages and lymphocytes are involved in the pathogenesis of diabetes,diabetic atherosclerosis,formation of insulin resistance as well as immune response to cancer and tumor maintenance.The aim of the study was to determine the Akt activation by mTORC2 in peripheral blood mononuclear cell(PBMC)of patients with type 2 diabetes and cancer.The following groups were studied:control group,patients with type 2 diabetes,cancer patients and patients with both cancer and diabetes.The amounts of phospho-Akt(р-S473)and phospho-p70S6K1(p-T389)were determined using ELISA kits.The amount of phosphorylated Akt significantly increases in PBMC of patients with cancer.There was no effect in PBMC from patients with type 2 diabetes and significant decrease in the amount of phospho-Akt in PBMC of the patients group both with cancer and diabetes.p70S6K1 activation was observed in PBMC of the groups 2 and 3 patients.Thus,chronic diseases such as type 2 diabetes and cancer can affect the signaling mechanisms in blood cells.The state of Akt phosphorylation in leukocytes can indicate the activity of mTORC1 and its substrates,which may be important for the evaluation of the pathological process and the efficacy of the drugs.