Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t...Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.展开更多
Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a nov...Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation.Results: By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4(SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6(TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway.Conclusions: MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality.展开更多
AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells. METHODS Western blotting was used to d...AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells. METHODS Western blotting was used to detect the expression of CXCL12 and CXCL6 in colon cancer cells and stromal cells. The co-operative effects of CXCL12 and CXCL6 on proliferation and invasion of colon cancer cells and human umbilical vein endothelial cells(HUVECs) were determined by enzyme-linked immunosorbent assay,and proliferation and invasion assays. The angiogenesis of HUVECs through interaction with cancer cells and stromal cells was examined by angiogenesis assay. We eventually investigated activation of PI3K/Akt/m TOR signaling by CXCL12 involved in the metastatic process of colon cancer.RESULTS CXCL12 was expressed in DLD-1 cancer cells and fibroblasts. The secretion level of CXCL6 by colon cancer cells and HUVECs were significantly promoted by fibroblasts derived from CXCL12. CXCL6 and CXCL2 could significantly enhance HUVEC proliferation and migration(P < 0.01). CXCL6 and CXCL2 enhanced angiogenesis by HUVECs when cultured with fibroblast cells and colon cancer cells(P < 0.01). CXCL12 also enhanced the invasion of colon cancer cells. Stromal cell-derived CXCL12 promoted the secretion level of CXCL6 and co-operatively promoted metastasis of colon carcinoma through activation of the PI3K/Akt/m TOR pathway.CONCLUSION Fibroblast-derived CXCL12 enhanced the CXCL6 secretion of colon cancer cells,and both CXCL12 and CXCL6 co-operatively regulated the metastasis via the PI3K/Akt/m TOR signaling pathway. Blocking this pathway may be a potential anti-metastatic therapeutic target for patients with colon cancer.展开更多
Objective:Myeloma bone disease(MBD)is the most common complication of multiple myeloma(MM).Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the seve...Objective:Myeloma bone disease(MBD)is the most common complication of multiple myeloma(MM).Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the severity of bone disease.However,the mechanism of C3 a/C4 a in osteoclasts MM patients remains unclear.Methods:The formation and function of osteoclasts were analyzed after adding C3 a/C4 a in vitro.RNA-seq analysis was used to screen the potential pathways affecting osteoclasts,and the results were verified by Western blot,q RT-PCR,and pathway inhibitors.Results:The osteoclast area per view induced by 1μg/m L(mean±SD:50.828±12.984%)and 10μg/m L(53.663±12.685%)of C3 a was significantly increased compared to the control group(0μg/m L)(34.635±8.916%)(P<0.001 and P<0.001,respectively).The relative m RNA expressions of genes,OSCAR/TRAP/RANKL/cathepsin K,induced by 1μg/m L(median:5.041,3.726,1.638,and 4.752,respectively)and 10μg/m L(median:5.140,3.702,2.250,and 5.172,respectively)of C3 a was significantly increased compared to the control group(median:3.137,2.004,0.573,and 2.257,respectively)(1μg/m L P=0.001,P=0.003,P<0.001,and P=0.008,respectively;10μg/m L:P<0.001,P=0.019,P<0.001,and P=0.002,respectively).The absorption areas of the osteoclast resorption pits per view induced by 1μg/m L(mean±SD:51.464±11.983%)and 10μg/m L(50.219±12.067%)of C3 a was also significantly increased(33.845±8.331%)(P<0.001 and P<0.001,respectively)compared to the control.There was no difference between the C4 a and control groups.RNA-seq analysis showed that C3 a promoted the proliferation of osteoclasts using the phosphoinositide 3-kinase(PI3 K)signaling pathway.The relative expressions of PIK3 CA/phosphoinositide dependent kinase-1(PDK1)/serum and glucocorticoid inducible protein kinases(SGK3)genes and PI3 K/PDK1/p-SGK3 protein in the C3 a group were significantly higher than in the control group.The activation role of C3 a in osteoclasts of MM patients was reduced by the SGK inhibitor(EMD638683).Conclusions:C3 a activated osteoclasts by regulating the PI3 K/PDK1/SGK3 pathways in MM patients,which was reduced using a SGK inhibitor.Overall,our results identified potential therapeutic targets and strategies for MBD patients。展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC) is one of the deadliest solid tumors. Identification of diagnostic and therapeutic biomarkers for PDAC is urgently needed. Transducin(β)-like 1 X-linked receptor 1(TB...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC) is one of the deadliest solid tumors. Identification of diagnostic and therapeutic biomarkers for PDAC is urgently needed. Transducin(β)-like 1 X-linked receptor 1(TBL1 XR1) has been linked to the progression of various human cancers. Nevertheless, the function and role of TBL1 XR1 in pancreatic cancers are unclear.AIM To elucidate the function and potential mechanism of TBL1 XR1 in the development of PDAC.METHODS Ninety patients with histologically-confirmed PDAC were included in this study. PDAC tumor samples and cell lines were used to determine the expression of TBL1 XR1. CCK-8 assays and colony formation assays were carried out to assess PDAC cell viability. Flow cytometry was performed to measure the changes in the cell cycle and cell apoptosis. Changes in related protein expression were measured by western blot analysis. Animal analysis was conducted to confirm the impact of TBL1 XR1 in vivo.RESULTS Patients with TBL1 XR1-positive tumors had worse overall survival than those with TBL1 XR1-negative tumors. Moreover, we found that TBL1 XR1 strongly promoted PDAC cell proliferation and inhibited PDAC cell apoptosis. Moreover, knockdown of TBL1 XR1 induced G0/G1 phase arrest. In vivo animal studies confirmed that TBL1 XR1 accelerated tumor cell growth. The results of western blot analysis showed that TBL1 XR1 might play a key role in regulating PDAC cell proliferation and apoptosis via the PI3 K/AKT pathway.CONCLUSION TBL1 XR1 promoted PDAC cell progression and might be an effective diagnostic and therapeutic marker for pancreatic cancer.展开更多
BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates dem...BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates demethylated.Abnormal regulation of LSD1 is closely related to the occurrence and development of gastric cancer.The change of LSD1 expression level plays an important role in the proliferation and metastasis of gastric cancer cells.The study of its function and mechanism may provide a theoretical basis for early diagnosis and targeted therapy of gastric cancer.AIM To investigate the effect of downregulation of lysine-specific demethylase 1(LSD1)expression on proliferation and invasion of gastric cancer cells and the possible regulatory mechanisms of the VEGF-C/PI3K/AKT signaling pathway.METHODS The LSD1-specific short hairpin RNA(shRNA)interference plasmid was transiently transfected,and expression of LSD1 was downregulated.The cell proliferation ability of LSD1 was observed by CCK-8 assay after downregulating expression of LSD1.Transwell invasion assay was used to observe the change of cell invasion ability after downregulating expression of LSD1.Expression of phosphorylated phosphoinositide 3-kinase(p-PI3K),PI3K,p-AKT,AKT,vascular endothelial growth factor receptor(VEGFR)-3,matrix metalloproteinase(MMP)-2 and MMP-9 in each group was detected by Western blotting.RESULTS The cell proliferation ability of transiently transfected LSD1-shRNA interference plasmid group was significantly lower than that of the control group(P<0.05).Transwell invasion assay showed that the number of cells across the membrane of the LSD1-shRNA transfection group(238.451±5.216)was significantly lower than that of the control group(49.268±6.984)(P<0.01).Western blotting showed that expression level of VEGF-C,p-PI3K,PI3K,p-AKT,AKT,VEGFR-3,MMP-2 and MMP-9 in the LSD1-shRNA group was significantly lower than that in the control group(P<0.05).CONCLUSION Downregulation of LSD1 expression inhibits metastatic potential of gastric cancer cells,and VEGF-C-mediated activation of PI3K/AKT signaling pathway,which may be an important mechanism for inhibiting lymph node metastasis in gastric cancer cells.展开更多
This study examined the role of EMP-1 in tumorigenesis of non-small cell lung carcinoma (NSCLC) and the possible mechanism. Specimens were collected from 28 patients with benign lung diseases and 28 with NSCLC, and im...This study examined the role of EMP-1 in tumorigenesis of non-small cell lung carcinoma (NSCLC) and the possible mechanism. Specimens were collected from 28 patients with benign lung diseases and 28 with NSCLC, and immunohis to chemically detected to evaluate the correlation of EMP-1 expression to the clinical features of NSCLC. Recombinant adenovirus was constructed to over-express EMP-1 and then infect PC9 cells. Cell proliferation was measured by Ki67 staining. Western blotting was performed to examine the effect of EMP-1 on the PI3K/AKT signaling. Moreover, tumor xeno-grafts were established by subcutaneous injection of PC9 cell suspension (about 5×107/mL in 100 μL of PBS) into the right hind limbs of athymic nude mice. The results showed EMP-1 was significantly up-regulated in NSCLC patients as compared with those with benign lung diseases. Over-expression of EMP-1 promoted proliferation of PC9 cells, which coincided with the activation of the PI3K/AKT pathway. EMP-1 promoted the growth of xenografts of PC9 cells in athymic nude mice. It was concluded that EMP-1 expression may contribute to the development and progress of NSCLC by activating PI3K/AKT pathway.展开更多
OBJECTIVE To determine the role of the basic helix-loop-helix(b HLH)transcription factor,differentiated embryonic chondrocyte gene 1(DEC1),in the apoptosis induced by 1-methyl-4-phenylpyridiniumion(MPP+)in SH-SY5Y cel...OBJECTIVE To determine the role of the basic helix-loop-helix(b HLH)transcription factor,differentiated embryonic chondrocyte gene 1(DEC1),in the apoptosis induced by 1-methyl-4-phenylpyridiniumion(MPP+)in SH-SY5Y cells.METHODS SH-SY5Y cells were treated with different concentrations of MPP+for 24or 48 h.The cell inhibition and apoptosis were measured by MTT and DAPI staining.DEC1,the apoptosis-related proteins and PI3K/Akt/GSK3β/β-catenin signaling were determined by Western blotting.The expression of DEC1was regulated by overexpression and sh RNA.RESULTS MPP+induces apoptosis along with decreasing of DEC1expression in SH-SY5Y cells.Overexpression or knockdown of DEC1 can alleviate or enhance the cell inhibition induced by MPP+.And overexpression of DEC1 can alleviate the increased cleaved caspase 3/caspase 3 but not alleviate Bax/Bcl-2 induced by MPP+.Meanwhile,MPP+represses PI3Kp110α,p-Akt/Akt,p-GSK-3β/GSK-3βandβ-catenin expression,which is accompanied by decreasing DEC1 expressions.It is confirmed that the activator or inhibitor of PI3K/Akt/GSK-3βpathway can alleviate or enhance the repression of PI3K/Akt/GSK3β/β-catenin signaling cascade induced by MPP+.Further study,we find that overexpression of DEC1 alone can increase PI3Kp110α,p-Akt/Akt,p-GSK-3β/GSK-3β,andβ-catenin expression.More importantly,overexpression of DEC1 significantly alleviates the decreased levels of PI3Kp110α,p-Akt/Akt,p-GSK-3β/GSK-3β,andβ-catenin induced by MPP+.CONCLUSION DEC1 provides neuroprotection from apoptosis induced by MPP+through PI3K/Akt pathway in SH-SY5Y cells.Promisingly,DEC1 is a candidate gene that may provide a novel therapeutic approach for the treatment of Parkinson disease.展开更多
Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology me...Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology method to screen the active compoundsand candidate targets,construct the protein-protein-interaction network,and ingredients-targets-pathways network was constructed for topological analysis to identify core targets and main ingredients.To find the possible signaling pathways,enrichment analysis was performed.Further,a model of insulin resistance in HL-7702 cells was established to verify the impact of SMW and the regulatory processes.Results:An overall of 63 active components and 151 candidate targets were obtained,in which flavonoids were the main ingredients.Enrichment analysis indicated that the PI3K-Akt signaling pathway was the potential pathway regulated by SMW in obesity-associated insulin resistance treatment.The result showed that SMW could significantly ameliorate insulin sensitivity,increase glucose synthesis and glucose utilization and reduce intracellular lipids accumulation in hepatocytes.Also,SMW inhibited diacylglycerols accumulation-induced PKCεactivity and decreased its translocation to the membrane.Conclusion:SMW ameliorated obesity-associated insulin resistance through PKCε/IRS-1/PI3K/Akt signaling axis in hepatocytes,providing a new strategy for metabolic disease treatment.展开更多
BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional ...BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional Chinese medicine monomer with a wide range of pharmacological properties,has attracted considerable attention for its antitumor activity.AIM To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action.METHODS The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses.The effect of scoparone on pancreatic cancer cell proliferation,migration,invasion,cell cycle,and apoptosis was detected in vitro.The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction(qRT-PCR),and the molecular mechanism was analyzed using Western blot.The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry.RESULTS The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms,including SwissTargetPrediction,STITCH,GeneCards,CTD,STRING,WebGestalt,Cytoscape,and Gepia;AKT1 was confirmed using qRT-PCR to be the hub gene.Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2μmol/L and 209.1μmol/L,respectively.Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells.Additionally,flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis.Scoparone also increased the expression levels of Bax and cleaved caspase-3,decreased the levels of MMP9 and Bcl-2,and suppressed the phosphorylation of Akt without affecting total PI3K and Akt.Moreover,compared with the control group,xenograft tumors,in the 200μmol/L scoparone treatment group,were smaller in volume and lighter in weight,and the percentages of Ki65-and PCNA-positive cells were decreased.CONCLUSION Our findings indicate that scoparone inhibits pancreatic cancer cell proliferation in vitro and in vivo,inhibits migration and invasion,and induces cycle arrest and apoptosis in vitro through the PI3K/Akt signaling pathway.展开更多
AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eE...AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.展开更多
Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of ba...Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of baicalin in a neonatal rat model of hypoxic-ischemic encephalopathy.Seven-day-old pups underwent left common carotid artery ligation followed by hypoxia(8% oxygen at 37°C) for 2 hours,before being injected with baicalin(120 mg/kg intraperitoneally) and examined 24 hours later.Baicalin effectively reduced cerebral infarct volume and neuronal loss,inhibited apoptosis,and upregulated the expression of p-Akt and glutamate transporter 1.Intracerebroventricular injection of the phosphoinositide 3-kinase/protein kinase B(PI3 K/Akt) inhibitor LY294002 30 minutes before injury blocked the effect of baicalin on p-Akt and glutamate transporter 1,and weakened the associated neuroprotective effect.Our findings provide the first evidence,to our knowledge that baicalin can protect neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the PI3 K/Akt signaling pathway.展开更多
We previously demonstrated that 2-hydroxypropyltrimethyl ammonium chloride chitosan(HACC)promoted the production of nitric oxide(NO)and proinflammatory cytokines by activating the mitogen-activated protein kinases(MAP...We previously demonstrated that 2-hydroxypropyltrimethyl ammonium chloride chitosan(HACC)promoted the production of nitric oxide(NO)and proinflammatory cytokines by activating the mitogen-activated protein kinases(MAPK)and Janus kinase(JAK)/STAT pathways in RAW 264.7 cells,indicating good immunomodulatory activity of HACC.In this study,to further investigate the immunomodulatory mechanisms of HACC,we determined the roles of phosphatidylinositol 3-kinase(PI3K)/Akt,activating protein(AP-1)and nuclear factor kappa B(NF-κB)in HACC-induced activation of RAW 264.7 cells by the western blotting.The results suggest that HACC promoted the phosphorylation of p85 and Akt.Furthermore,c-Jun and p65 were also increased after the treatment of RAW 264.7 cells with HACC,indicating the translocation of NF-κB and AP-1 from cytoplasm to nucleus.In addition,as scanning electron microscopy(SEM)analysis shows,the cell morphology changed after HACC treatment.These findings indicate that HACC activated MAPK,JAK/STAT,and PI3K/Akt signaling pathways dependent on AP-1 and NF-κB activation in RAW 264.7 cells,ultimately leading to the increase of NO and cytokines.展开更多
The purpose of this study was to explore the mechanism of Solanine disrupting energy metabolism in human renal cancer ACHN cells and to clarify its target. The specific method was to culture human renal cancer ACHN ce...The purpose of this study was to explore the mechanism of Solanine disrupting energy metabolism in human renal cancer ACHN cells and to clarify its target. The specific method was to culture human renal cancer ACHN cell lines, and to intervene with Solanine of high, medium and low concentrations. The content of ATP in cells was measured by ELISA method. The expression of HIF-1α protein and the expression of PI3K, AKT, p-PI3K, p-AKT in PI3K/AKT pathway were detected by Western blotting. The results showed that compared with the control group, the relative expression of p-PI3K and p-AKT showed a downward trend with the increase of Solanine concentration (P < 0.05), while the relative expression of PI3K and AKT showed no significant change (P > 0.05). In addition, the relative expression of HIF-1α also showed a downward trend (P < 0.05). According to the above results, it is suggested that Solanine can significantly inhibit the energy metabolism of renal cancer cells, the main mechanism of which is the down-regulation of HI-1αf downstream of the PI3K/Akt pathway by inhibiting the phosphorylation process of PI3K/p-PI3K and Akt/p-Akt.展开更多
Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in...Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice(Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1(HO-1), nuclear factor erythroid 2-related factor 2(Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA(20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor(10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3 K/Akt signaling pathway inhibitor LY294002(10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3 K/Akt signaling pathway.展开更多
Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly...Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt anal ERK1/2 patl^ways, l^urther studies reve^ed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration.展开更多
Objective:The aim of this study was to investigate the mechanism of acupotomology(Apo)in the prevention of articular cartilage destruction via the promotion of chondrocyte proliferation and chondrocyte expression of c...Objective:The aim of this study was to investigate the mechanism of acupotomology(Apo)in the prevention of articular cartilage destruction via the promotion of chondrocyte proliferation and chondrocyte expression of cell cycle regulators,CyclinD1,CDK4 and CDK6 in a rabbit knee osteoarthritis(KOA)model.Methods:Twenty-eight rabbits were randomly divided into a control group,an OA(osteoarthritis)model group,an Apo(acupotomology)group and EA(electro-acupuncture)group(n Z 7).Improved Videman’s method was used to induce a rabbit model of KOA over 6 weeks.One week later,acupotomy and electro-acupuncture therapy was applied to animals in the respective groups and treatment lasted 4 weeks.Following these treatments,quantitative real-time PCR,immunohistochemical staining and western blotting were performed to assess the mRNA and protein levels of cell cycle regulators CyclinD1(Cell cycle protein D1),CDK4(Cyclin-dependent kinase 4)and CDK6(Cyclin-dependent kinase 6).Ethology measures and knee morphology were also compared among groups.Results:The Lequesne MG index score of morphology was increased(P<.01),and the passive range of motion(PROM)and the mRNA and protein levels of CyclinD1,CDK4,and CDK6 were significantly decreased(P<.01)in the OA model compared with the control group.The Lequesne MG index score and the morphology score were decreased in the Apo and EA group compared with the OA model group(P<.05 or P<.01),while the mRNA levels of CyclinD1,CDK4,and CDK6,and the protein levels of CDK4 were increased in the Apo and EA groups compared with the OA model group(P<.05 or P<.01).The PROM,and the protein levels of CyclinD1 and CDK6 were increased(P<.05)in the Apo group compared with the OA model group,while the PROM and the protein levels of CyclinD1 and CDK6 in the EA group were not significantly different(P>.05).Compared with the EA group,the morphology score was decreased in Apo group(P<.05).Conclusions:The mRNA levels of CyclinD1 and CDK4,and the protein level of CDK4 in chondrocytes are regulate by both Apo and EA.Apo is more effective than EA in regulating the protein levels of CyclinD1 and CDK6.According to the observed changes in morphology and cytokine levels,acupotomy can promote chondrocyte proliferation and can alleviate the destruction of articular cartilage in a model of KOA.展开更多
Nasopharyngeal carcinoma(NPC)is the most prevalent human primary malignancy of the head and neck,and the presence of vasculogenic mimicry(VM)renders anti-angiogenic therapy ineffective and poorly prognostic.However,th...Nasopharyngeal carcinoma(NPC)is the most prevalent human primary malignancy of the head and neck,and the presence of vasculogenic mimicry(VM)renders anti-angiogenic therapy ineffective and poorly prognostic.However,the underlying mechanisms are unclear.In the present study,we used miR-940 silencing and overexpression for in vitro NPC cell EdU staining,wound healing assay and 3D cell culture assay,and in vivo xenograft mouse model and VM formation to assess miR-940 function.We found that ectopic miR-940 expression reduced NPC cell proliferation,migration and VM,as well as tumorigenesis in vivo.By bioinformatic analysis,circMAN1A2 was identified as a circRNA that binds to miR-940.Mechanistically,we confirmed that circMAN1A2 acts as a sponge for miR-940,impairs the inhibitory effect of miR-940 on target ERBB2,and then activates the PI3K/AKT/mTOR signaling pathway using RNA-FISH,dual luciferase reporter gene and rescue analysis assays.In addition,upregulation of ERBB2 expression is associated with clinical staging and poor prognosis of NPC.Taken together,the present findings suggest that circMAN1A2 promotes VM formation and progression of NPC through miR-940/ERBB2 axis and further activates the PI3K/AKT/mTOR pathway.Therefore,circMAN1A2 may become a biomarker and therapeutic target for anti-angiogenic therapy in patients with nasopharyngeal carcinoma.展开更多
基金supported by the National Natural Science Foundation of China,No.81971097(to JY)。
文摘Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage.
基金supported by grants from the National Natural Science Foundation (31872979, 31572366)the National Key Research and Development Program of China (2017YFD0502002)the National Basic Research Programs of China (2015CB943102)。
文摘Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation.Results: By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4(SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6(TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway.Conclusions: MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality.
基金Supported by National Natural Science Foundation of China,No.81260325(to Ma JC)
文摘AIM To investigate the underlying mechanism by which CXCL12 and CXCL6 influences the metastatic potential of colon cancer and internal relation of colon cancer and stromal cells. METHODS Western blotting was used to detect the expression of CXCL12 and CXCL6 in colon cancer cells and stromal cells. The co-operative effects of CXCL12 and CXCL6 on proliferation and invasion of colon cancer cells and human umbilical vein endothelial cells(HUVECs) were determined by enzyme-linked immunosorbent assay,and proliferation and invasion assays. The angiogenesis of HUVECs through interaction with cancer cells and stromal cells was examined by angiogenesis assay. We eventually investigated activation of PI3K/Akt/m TOR signaling by CXCL12 involved in the metastatic process of colon cancer.RESULTS CXCL12 was expressed in DLD-1 cancer cells and fibroblasts. The secretion level of CXCL6 by colon cancer cells and HUVECs were significantly promoted by fibroblasts derived from CXCL12. CXCL6 and CXCL2 could significantly enhance HUVEC proliferation and migration(P < 0.01). CXCL6 and CXCL2 enhanced angiogenesis by HUVECs when cultured with fibroblast cells and colon cancer cells(P < 0.01). CXCL12 also enhanced the invasion of colon cancer cells. Stromal cell-derived CXCL12 promoted the secretion level of CXCL6 and co-operatively promoted metastasis of colon carcinoma through activation of the PI3K/Akt/m TOR pathway.CONCLUSION Fibroblast-derived CXCL12 enhanced the CXCL6 secretion of colon cancer cells,and both CXCL12 and CXCL6 co-operatively regulated the metastasis via the PI3K/Akt/m TOR signaling pathway. Blocking this pathway may be a potential anti-metastatic therapeutic target for patients with colon cancer.
基金supported by the National Natural Science Foundation of China(Grant Nos.81770110,81900131,and 82000219)the Anticancer Major Special Project of Tianjin(Grant No.12ZCDZSY18000)+4 种基金the Tianjin Municipal Natural Science Foundation(Grant Nos.18JCYBJC27200 and 18JCQNJC80400)the Tianjin Education Commission Research Project(Grant Nos.2018KJ043 and 2018KJ045)the Tianjin Health and Family Planning Commission(Grant No.15KG150)the Youth Incubation Fund of Tianjin Medical University General Hospital(Grant No.ZYYFY2019020)the Tianjin Science and Technology Planning Project(Grant No.20YFZCSY00060)。
文摘Objective:Myeloma bone disease(MBD)is the most common complication of multiple myeloma(MM).Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the severity of bone disease.However,the mechanism of C3 a/C4 a in osteoclasts MM patients remains unclear.Methods:The formation and function of osteoclasts were analyzed after adding C3 a/C4 a in vitro.RNA-seq analysis was used to screen the potential pathways affecting osteoclasts,and the results were verified by Western blot,q RT-PCR,and pathway inhibitors.Results:The osteoclast area per view induced by 1μg/m L(mean±SD:50.828±12.984%)and 10μg/m L(53.663±12.685%)of C3 a was significantly increased compared to the control group(0μg/m L)(34.635±8.916%)(P<0.001 and P<0.001,respectively).The relative m RNA expressions of genes,OSCAR/TRAP/RANKL/cathepsin K,induced by 1μg/m L(median:5.041,3.726,1.638,and 4.752,respectively)and 10μg/m L(median:5.140,3.702,2.250,and 5.172,respectively)of C3 a was significantly increased compared to the control group(median:3.137,2.004,0.573,and 2.257,respectively)(1μg/m L P=0.001,P=0.003,P<0.001,and P=0.008,respectively;10μg/m L:P<0.001,P=0.019,P<0.001,and P=0.002,respectively).The absorption areas of the osteoclast resorption pits per view induced by 1μg/m L(mean±SD:51.464±11.983%)and 10μg/m L(50.219±12.067%)of C3 a was also significantly increased(33.845±8.331%)(P<0.001 and P<0.001,respectively)compared to the control.There was no difference between the C4 a and control groups.RNA-seq analysis showed that C3 a promoted the proliferation of osteoclasts using the phosphoinositide 3-kinase(PI3 K)signaling pathway.The relative expressions of PIK3 CA/phosphoinositide dependent kinase-1(PDK1)/serum and glucocorticoid inducible protein kinases(SGK3)genes and PI3 K/PDK1/p-SGK3 protein in the C3 a group were significantly higher than in the control group.The activation role of C3 a in osteoclasts of MM patients was reduced by the SGK inhibitor(EMD638683).Conclusions:C3 a activated osteoclasts by regulating the PI3 K/PDK1/SGK3 pathways in MM patients,which was reduced using a SGK inhibitor.Overall,our results identified potential therapeutic targets and strategies for MBD patients。
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC) is one of the deadliest solid tumors. Identification of diagnostic and therapeutic biomarkers for PDAC is urgently needed. Transducin(β)-like 1 X-linked receptor 1(TBL1 XR1) has been linked to the progression of various human cancers. Nevertheless, the function and role of TBL1 XR1 in pancreatic cancers are unclear.AIM To elucidate the function and potential mechanism of TBL1 XR1 in the development of PDAC.METHODS Ninety patients with histologically-confirmed PDAC were included in this study. PDAC tumor samples and cell lines were used to determine the expression of TBL1 XR1. CCK-8 assays and colony formation assays were carried out to assess PDAC cell viability. Flow cytometry was performed to measure the changes in the cell cycle and cell apoptosis. Changes in related protein expression were measured by western blot analysis. Animal analysis was conducted to confirm the impact of TBL1 XR1 in vivo.RESULTS Patients with TBL1 XR1-positive tumors had worse overall survival than those with TBL1 XR1-negative tumors. Moreover, we found that TBL1 XR1 strongly promoted PDAC cell proliferation and inhibited PDAC cell apoptosis. Moreover, knockdown of TBL1 XR1 induced G0/G1 phase arrest. In vivo animal studies confirmed that TBL1 XR1 accelerated tumor cell growth. The results of western blot analysis showed that TBL1 XR1 might play a key role in regulating PDAC cell proliferation and apoptosis via the PI3 K/AKT pathway.CONCLUSION TBL1 XR1 promoted PDAC cell progression and might be an effective diagnostic and therapeutic marker for pancreatic cancer.
基金Supported by Doctoral Special Research Fund of Qiqihar Medical College,No.QY2016B-06
文摘BACKGROUND Histone Lysine Specific Demethylase 1(LSD1)is the first histone demethylase to be discovered,which regulates various biological functions by making lysine of histone H3K4,H3K9 and non-histone substrates demethylated.Abnormal regulation of LSD1 is closely related to the occurrence and development of gastric cancer.The change of LSD1 expression level plays an important role in the proliferation and metastasis of gastric cancer cells.The study of its function and mechanism may provide a theoretical basis for early diagnosis and targeted therapy of gastric cancer.AIM To investigate the effect of downregulation of lysine-specific demethylase 1(LSD1)expression on proliferation and invasion of gastric cancer cells and the possible regulatory mechanisms of the VEGF-C/PI3K/AKT signaling pathway.METHODS The LSD1-specific short hairpin RNA(shRNA)interference plasmid was transiently transfected,and expression of LSD1 was downregulated.The cell proliferation ability of LSD1 was observed by CCK-8 assay after downregulating expression of LSD1.Transwell invasion assay was used to observe the change of cell invasion ability after downregulating expression of LSD1.Expression of phosphorylated phosphoinositide 3-kinase(p-PI3K),PI3K,p-AKT,AKT,vascular endothelial growth factor receptor(VEGFR)-3,matrix metalloproteinase(MMP)-2 and MMP-9 in each group was detected by Western blotting.RESULTS The cell proliferation ability of transiently transfected LSD1-shRNA interference plasmid group was significantly lower than that of the control group(P<0.05).Transwell invasion assay showed that the number of cells across the membrane of the LSD1-shRNA transfection group(238.451±5.216)was significantly lower than that of the control group(49.268±6.984)(P<0.01).Western blotting showed that expression level of VEGF-C,p-PI3K,PI3K,p-AKT,AKT,VEGFR-3,MMP-2 and MMP-9 in the LSD1-shRNA group was significantly lower than that in the control group(P<0.05).CONCLUSION Downregulation of LSD1 expression inhibits metastatic potential of gastric cancer cells,and VEGF-C-mediated activation of PI3K/AKT signaling pathway,which may be an important mechanism for inhibiting lymph node metastasis in gastric cancer cells.
基金supported by grants from the National Natural Science Foundation of China (Nos.81072431,30872472,30973496 and 30800569)the Innovative Foundation of Huazhong University of Science and Technology (No.2010MS027)+1 种基金the Foundation of "973" Program (No.2009CB521802)by Special Fund for Central University Basic Scientific Research (Nos.2011JC062,2011JC063)
文摘This study examined the role of EMP-1 in tumorigenesis of non-small cell lung carcinoma (NSCLC) and the possible mechanism. Specimens were collected from 28 patients with benign lung diseases and 28 with NSCLC, and immunohis to chemically detected to evaluate the correlation of EMP-1 expression to the clinical features of NSCLC. Recombinant adenovirus was constructed to over-express EMP-1 and then infect PC9 cells. Cell proliferation was measured by Ki67 staining. Western blotting was performed to examine the effect of EMP-1 on the PI3K/AKT signaling. Moreover, tumor xeno-grafts were established by subcutaneous injection of PC9 cell suspension (about 5×107/mL in 100 μL of PBS) into the right hind limbs of athymic nude mice. The results showed EMP-1 was significantly up-regulated in NSCLC patients as compared with those with benign lung diseases. Over-expression of EMP-1 promoted proliferation of PC9 cells, which coincided with the activation of the PI3K/AKT pathway. EMP-1 promoted the growth of xenografts of PC9 cells in athymic nude mice. It was concluded that EMP-1 expression may contribute to the development and progress of NSCLC by activating PI3K/AKT pathway.
基金The project supported by National Natural Science Foundation of China(81573503,81373443)by the Major Project of Jiangsu Provincial Department of Education(13KJA310003)
文摘OBJECTIVE To determine the role of the basic helix-loop-helix(b HLH)transcription factor,differentiated embryonic chondrocyte gene 1(DEC1),in the apoptosis induced by 1-methyl-4-phenylpyridiniumion(MPP+)in SH-SY5Y cells.METHODS SH-SY5Y cells were treated with different concentrations of MPP+for 24or 48 h.The cell inhibition and apoptosis were measured by MTT and DAPI staining.DEC1,the apoptosis-related proteins and PI3K/Akt/GSK3β/β-catenin signaling were determined by Western blotting.The expression of DEC1was regulated by overexpression and sh RNA.RESULTS MPP+induces apoptosis along with decreasing of DEC1expression in SH-SY5Y cells.Overexpression or knockdown of DEC1 can alleviate or enhance the cell inhibition induced by MPP+.And overexpression of DEC1 can alleviate the increased cleaved caspase 3/caspase 3 but not alleviate Bax/Bcl-2 induced by MPP+.Meanwhile,MPP+represses PI3Kp110α,p-Akt/Akt,p-GSK-3β/GSK-3βandβ-catenin expression,which is accompanied by decreasing DEC1 expressions.It is confirmed that the activator or inhibitor of PI3K/Akt/GSK-3βpathway can alleviate or enhance the repression of PI3K/Akt/GSK3β/β-catenin signaling cascade induced by MPP+.Further study,we find that overexpression of DEC1 alone can increase PI3Kp110α,p-Akt/Akt,p-GSK-3β/GSK-3β,andβ-catenin expression.More importantly,overexpression of DEC1 significantly alleviates the decreased levels of PI3Kp110α,p-Akt/Akt,p-GSK-3β/GSK-3β,andβ-catenin induced by MPP+.CONCLUSION DEC1 provides neuroprotection from apoptosis induced by MPP+through PI3K/Akt pathway in SH-SY5Y cells.Promisingly,DEC1 is a candidate gene that may provide a novel therapeutic approach for the treatment of Parkinson disease.
基金supported by the National Natural Science Foundation of China(81903871)Natural Science Foundation of Jiangsu Province(BK20190565)+1 种基金Fundamental Research Funds for the Central Universities(2632021ZD16)Zhenjiang City 2022 Science and Technology Innovation Fund(SH2022084).
文摘Background:The purpose of the study was to investigatethe active ingredients and potential biochemicalmechanisms of Simiao Wan(SMW)in obesity-associated insulin resistance.Methods:An integrated network pharmacology method to screen the active compoundsand candidate targets,construct the protein-protein-interaction network,and ingredients-targets-pathways network was constructed for topological analysis to identify core targets and main ingredients.To find the possible signaling pathways,enrichment analysis was performed.Further,a model of insulin resistance in HL-7702 cells was established to verify the impact of SMW and the regulatory processes.Results:An overall of 63 active components and 151 candidate targets were obtained,in which flavonoids were the main ingredients.Enrichment analysis indicated that the PI3K-Akt signaling pathway was the potential pathway regulated by SMW in obesity-associated insulin resistance treatment.The result showed that SMW could significantly ameliorate insulin sensitivity,increase glucose synthesis and glucose utilization and reduce intracellular lipids accumulation in hepatocytes.Also,SMW inhibited diacylglycerols accumulation-induced PKCεactivity and decreased its translocation to the membrane.Conclusion:SMW ameliorated obesity-associated insulin resistance through PKCε/IRS-1/PI3K/Akt signaling axis in hepatocytes,providing a new strategy for metabolic disease treatment.
基金Supported by National Natural Science Foundation of China,No.817706555Special Project from the Central Government of Liaoning Province,No.2018107003+6 种基金Liaoning Province Medical Science and Technology Achievements Transformation Foundation,No.2018225120China Postdoctoral Science Foundation,No.2020M670101ZXDoctoral Scientific Research Foundation of Liaoning Province,No.2019-BS-276Science and Technology Program of Shenyang,No.19-112-4-103Youth Support Foundation of China Medical University,No.QGZ2018058Scientific Fund of Shengjing Hospital,No.201801345 Talent Project of Shengjing Hospital,No.52-30C.
文摘BACKGROUND Pancreatic cancer is a highly malignant tumor of the gastrointestinal system whose emerging resistance to chemotherapy has necessitated the development of novel antitumor treatments.Scoparone,a traditional Chinese medicine monomer with a wide range of pharmacological properties,has attracted considerable attention for its antitumor activity.AIM To explore the potential antitumor effect of scoparone on pancreatic cancer and the possible molecular mechanism of action.METHODS The target genes of scoparone were determined using both the bioinformatics and multiplatform analyses.The effect of scoparone on pancreatic cancer cell proliferation,migration,invasion,cell cycle,and apoptosis was detected in vitro.The expression of hub genes was tested using quantitative reverse transcription polymerase chain reaction(qRT-PCR),and the molecular mechanism was analyzed using Western blot.The in vivo effect of scoparone on pancreatic cancer cell proliferation was detected using a xenograft tumor model in nude mice as well as immunohistochemistry.RESULTS The hub genes involved in the suppression of pancreatic cancer by scoparone were obtained by network bioinformatics analyses using publicly available databases and platforms,including SwissTargetPrediction,STITCH,GeneCards,CTD,STRING,WebGestalt,Cytoscape,and Gepia;AKT1 was confirmed using qRT-PCR to be the hub gene.Cell Counting Kit-8 assay revealed that the viability of Capan-2 and SW1990 cells was significantly reduced by scoparone treatment exhibiting IC50 values of 225.2μmol/L and 209.1μmol/L,respectively.Wound healing and transwell assays showed that scoparone inhibited the migration and invasion of pancreatic cancer cells.Additionally,flow cytometry confirmed that scoparone caused cell cycle arrest and induced apoptosis.Scoparone also increased the expression levels of Bax and cleaved caspase-3,decreased the levels of MMP9 and Bcl-2,and suppressed the phosphorylation of Akt without affecting total PI3K and Akt.Moreover,compared with the control group,xenograft tumors,in the 200μmol/L scoparone treatment group,were smaller in volume and lighter in weight,and the percentages of Ki65-and PCNA-positive cells were decreased.CONCLUSION Our findings indicate that scoparone inhibits pancreatic cancer cell proliferation in vitro and in vivo,inhibits migration and invasion,and induces cycle arrest and apoptosis in vitro through the PI3K/Akt signaling pathway.
基金Supported by the Middle-Young Age Backbone Talent Cultivation Program of Fujian Health System,No.2013-ZQNJC-2Key Projects of Science and Technology Plan of Fujian Province,No.2014Y0009
文摘AIM: To assess the impact of eukaryotic elongation factor 1 alpha 2 (eEF1A2) on hepatocellular carcinoma (HCC) cell proliferation, apoptosis, migration and invasion, and determine the underlying mechanisms.METHODS: eEF1A2 levels were detected in 62 HCC tissue samples and paired pericarcinomatous specimens, and the human HCC cell lines SK-HEP-1, HepG2 and BEF-7402, by real-time PCR and immunohistochemistry. Experimental groups included eEF1A2 silencing in BEL-7402 cells with lentivirus eEF1A2-shRNA (KD group) and eEF1A2 overexpression in SK-HEP-1 cells with eEF1A2 plasmid (OE group). Non-transfected cells (control group) and lentivirus-based empty vector transfected cells (NC group) were considered control groups. Cell proliferation (MTT and colony formation assays), apoptosis (Annexin V-APC assay), cell cycle (DNA ploidy assay), and migration and invasion (Transwell assays) were assessed. Protein levels of PI3K/Akt/NF-κB signaling effectors were evaluated by Western blot.RESULTS: eEF1A2 mRNA and protein levels were significantly higher in HCC cancer tissue samples than in paired pericarcinomatous and normal specimens. SK-HEP-1 cells showed lower eEF1A2 mRNA levels; HepG2 and BEL-7402 cells showed higher eEF1A2 mRNA levels, with BEL-7402 cells displaying the highest amount. Efficient eEF1A2 silencing resulted in reduced cell proliferation, migration and invasion, increased apoptosis, and induced cell cycle arrest. The PI3K/Akt/NF-κB signaling pathway was notably inhibited. Inversely, eEF1A2 overexpression resulted in promoted cell proliferation, migration and invasion.CONCLUSION: eEF1A2, highly expressed in HCC, is a potential oncogene. Its silencing significantly decreases HCC tumorigenesis, likely by inhibiting PI3K/Akt/NF-κB signaling.
基金supported by the Chinese Medicine Research Foundation of Jiangxi Provincial Health Department of China,No.2013A040the Science and Technology Program of Jiangxi Provincial Health Department of China,No.20123023the Science and Technology Support Program of Jiangxi Province of China,No.2009BSB11209
文摘Baicalin is a flavonoid compound extracted from Scutellaria baicalensis root.Recent evidence indicates that baicalin is neuroprotective in models of ischemic stroke.Here,we investigate the neuroprotective effect of baicalin in a neonatal rat model of hypoxic-ischemic encephalopathy.Seven-day-old pups underwent left common carotid artery ligation followed by hypoxia(8% oxygen at 37°C) for 2 hours,before being injected with baicalin(120 mg/kg intraperitoneally) and examined 24 hours later.Baicalin effectively reduced cerebral infarct volume and neuronal loss,inhibited apoptosis,and upregulated the expression of p-Akt and glutamate transporter 1.Intracerebroventricular injection of the phosphoinositide 3-kinase/protein kinase B(PI3 K/Akt) inhibitor LY294002 30 minutes before injury blocked the effect of baicalin on p-Akt and glutamate transporter 1,and weakened the associated neuroprotective effect.Our findings provide the first evidence,to our knowledge that baicalin can protect neonatal rat brains against hypoxic-ischemic injury by upregulating glutamate transporter 1 via the PI3 K/Akt signaling pathway.
基金Supported by the National Key R&D Program of China(No.2018YFC0311305)the Key Research and Development Program of Shandong Province(Nos.2019GHY112015,2019YYSP028)。
文摘We previously demonstrated that 2-hydroxypropyltrimethyl ammonium chloride chitosan(HACC)promoted the production of nitric oxide(NO)and proinflammatory cytokines by activating the mitogen-activated protein kinases(MAPK)and Janus kinase(JAK)/STAT pathways in RAW 264.7 cells,indicating good immunomodulatory activity of HACC.In this study,to further investigate the immunomodulatory mechanisms of HACC,we determined the roles of phosphatidylinositol 3-kinase(PI3K)/Akt,activating protein(AP-1)and nuclear factor kappa B(NF-κB)in HACC-induced activation of RAW 264.7 cells by the western blotting.The results suggest that HACC promoted the phosphorylation of p85 and Akt.Furthermore,c-Jun and p65 were also increased after the treatment of RAW 264.7 cells with HACC,indicating the translocation of NF-κB and AP-1 from cytoplasm to nucleus.In addition,as scanning electron microscopy(SEM)analysis shows,the cell morphology changed after HACC treatment.These findings indicate that HACC activated MAPK,JAK/STAT,and PI3K/Akt signaling pathways dependent on AP-1 and NF-κB activation in RAW 264.7 cells,ultimately leading to the increase of NO and cytokines.
文摘The purpose of this study was to explore the mechanism of Solanine disrupting energy metabolism in human renal cancer ACHN cells and to clarify its target. The specific method was to culture human renal cancer ACHN cell lines, and to intervene with Solanine of high, medium and low concentrations. The content of ATP in cells was measured by ELISA method. The expression of HIF-1α protein and the expression of PI3K, AKT, p-PI3K, p-AKT in PI3K/AKT pathway were detected by Western blotting. The results showed that compared with the control group, the relative expression of p-PI3K and p-AKT showed a downward trend with the increase of Solanine concentration (P < 0.05), while the relative expression of PI3K and AKT showed no significant change (P > 0.05). In addition, the relative expression of HIF-1α also showed a downward trend (P < 0.05). According to the above results, it is suggested that Solanine can significantly inhibit the energy metabolism of renal cancer cells, the main mechanism of which is the down-regulation of HI-1αf downstream of the PI3K/Akt pathway by inhibiting the phosphorylation process of PI3K/p-PI3K and Akt/p-Akt.
基金supported by the National Natural Science Foundation of China,No.81571292(to XJZ)、81601152(to YY)the Natural Science Foundation of Hebei Province of China,No.H2017206338(to RC)
文摘Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice(Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1(HO-1), nuclear factor erythroid 2-related factor 2(Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA(20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor(10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3 K/Akt signaling pathway inhibitor LY294002(10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3 K/Akt signaling pathway.
基金supported by grants from the National Natural Science Foundation of China,Grant No.81370982,31170946Key Program,Grant No.81130080+1 种基金the Scientific Research Foundation for Returned Scholars,Ministry of Education of Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Claudin 14 has been shown to promote nerve repair and regeneration in the early stages of Wallerian degeneration (0-4 days) in rats with sciatic nerve injury, but the mechanism underlying this process remains poorly understood. This study reported the effects of claudin 14 on nerve degeneration and regeneration during early Wallerian degeneration. Claudin 14 expression was up-regulated in sciatic nerve 4 days after Wallerian degeneration. The altered expression of claudin 14 in Schwann cells resulted in expression changes of cytokines in vitro. Expression of claudin 14 affected c-Jun, but not Akt anal ERK1/2 patl^ways, l^urther studies reve^ed that enhanced expression of claudin 14 could promote Schwann cell proliferation and migration. Silencing of claudin 14 expression resulted in Schwann cell apoptosis and reduction in Schwann cell proliferation. Our data revealed the role of claudin 14 in early Wallerian degeneration, which may provide new insights into the molecular mechanisms of Wallerian degeneration.
基金the National Natural Science Foundation of China program(No.81574067).
文摘Objective:The aim of this study was to investigate the mechanism of acupotomology(Apo)in the prevention of articular cartilage destruction via the promotion of chondrocyte proliferation and chondrocyte expression of cell cycle regulators,CyclinD1,CDK4 and CDK6 in a rabbit knee osteoarthritis(KOA)model.Methods:Twenty-eight rabbits were randomly divided into a control group,an OA(osteoarthritis)model group,an Apo(acupotomology)group and EA(electro-acupuncture)group(n Z 7).Improved Videman’s method was used to induce a rabbit model of KOA over 6 weeks.One week later,acupotomy and electro-acupuncture therapy was applied to animals in the respective groups and treatment lasted 4 weeks.Following these treatments,quantitative real-time PCR,immunohistochemical staining and western blotting were performed to assess the mRNA and protein levels of cell cycle regulators CyclinD1(Cell cycle protein D1),CDK4(Cyclin-dependent kinase 4)and CDK6(Cyclin-dependent kinase 6).Ethology measures and knee morphology were also compared among groups.Results:The Lequesne MG index score of morphology was increased(P<.01),and the passive range of motion(PROM)and the mRNA and protein levels of CyclinD1,CDK4,and CDK6 were significantly decreased(P<.01)in the OA model compared with the control group.The Lequesne MG index score and the morphology score were decreased in the Apo and EA group compared with the OA model group(P<.05 or P<.01),while the mRNA levels of CyclinD1,CDK4,and CDK6,and the protein levels of CDK4 were increased in the Apo and EA groups compared with the OA model group(P<.05 or P<.01).The PROM,and the protein levels of CyclinD1 and CDK6 were increased(P<.05)in the Apo group compared with the OA model group,while the PROM and the protein levels of CyclinD1 and CDK6 in the EA group were not significantly different(P>.05).Compared with the EA group,the morphology score was decreased in Apo group(P<.05).Conclusions:The mRNA levels of CyclinD1 and CDK4,and the protein level of CDK4 in chondrocytes are regulate by both Apo and EA.Apo is more effective than EA in regulating the protein levels of CyclinD1 and CDK6.According to the observed changes in morphology and cytokine levels,acupotomy can promote chondrocyte proliferation and can alleviate the destruction of articular cartilage in a model of KOA.
基金supported by the National Natural Science Foundation of China(Grant No.81260348)the Key Research and Development Program of Guangxi(Grant No.GuiKe AB21196012).
文摘Nasopharyngeal carcinoma(NPC)is the most prevalent human primary malignancy of the head and neck,and the presence of vasculogenic mimicry(VM)renders anti-angiogenic therapy ineffective and poorly prognostic.However,the underlying mechanisms are unclear.In the present study,we used miR-940 silencing and overexpression for in vitro NPC cell EdU staining,wound healing assay and 3D cell culture assay,and in vivo xenograft mouse model and VM formation to assess miR-940 function.We found that ectopic miR-940 expression reduced NPC cell proliferation,migration and VM,as well as tumorigenesis in vivo.By bioinformatic analysis,circMAN1A2 was identified as a circRNA that binds to miR-940.Mechanistically,we confirmed that circMAN1A2 acts as a sponge for miR-940,impairs the inhibitory effect of miR-940 on target ERBB2,and then activates the PI3K/AKT/mTOR signaling pathway using RNA-FISH,dual luciferase reporter gene and rescue analysis assays.In addition,upregulation of ERBB2 expression is associated with clinical staging and poor prognosis of NPC.Taken together,the present findings suggest that circMAN1A2 promotes VM formation and progression of NPC through miR-940/ERBB2 axis and further activates the PI3K/AKT/mTOR pathway.Therefore,circMAN1A2 may become a biomarker and therapeutic target for anti-angiogenic therapy in patients with nasopharyngeal carcinoma.