A series of Al-doped silicon-rich silica (AlSiO) composite films have been prepared by a dual ion beam co-sputtering method with a Al, Si and SiO2 composite target. The content of Al and Si in the films can be adjuste...A series of Al-doped silicon-rich silica (AlSiO) composite films have been prepared by a dual ion beam co-sputtering method with a Al, Si and SiO2 composite target. The content of Al and Si in the films can be adjusted by changing the surface area of Al and Si of the target. Visible electroluminescence (EL) from the samples is found to have only one luminescence band peaked at 510 nm (2.4 eV). Experimental results show that the doping of Al is beneficial to reducing the onset voltage and to increasing the intensity of EL.展开更多
Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (...Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),and electrochemical measurements. XRD studies show that the Al-doped LiVPO4F has the same triclinic structure (space group p-↑1 ) as the undoped LiVPO4F. The SEM images exhibit that the particle size of Al-doped LiVPO4F is smaller than that of the undoped LiVPO4F and that the smallest particle size is only about 1 μm. The Al-doped LiVPO4F was evaluated as a cathode material for secondary lithium batteries,and exhibited an improved reversibility and cycleability,which may be attributed to the addition of Al^3+ ion by stabilizing the triclinic structure.展开更多
The electronic structures and elastic properties of Al-doped MoSi2 were calculated using the plane wave pseudo-potential method based on the density functional theory,in which the generalized-gradient approximation(GG...The electronic structures and elastic properties of Al-doped MoSi2 were calculated using the plane wave pseudo-potential method based on the density functional theory,in which the generalized-gradient approximation(GGA) was used to describe the exchange-correlation potential.Starting from the elastic constants,bulk modulus,shear modulus,elastic modulus and Poisson ratio of Al-doped MoSi2 were obtained by using the Hill method.The results indicate that conductivity of Al-doped MoSi2 is improved to some extent in comparison with that of pure MoSi2 due to the orbit hybridization of Mo 4d,Al 3p and Si 3p electrons.In addition,calculations show that the elastic modulus and the brittleness of Al-doped MoSi2 are smaller than those of pure MoSi2,which implies that it is feasible to toughen MoSi2 by doping Al.The agreement of the conclusion with experiment shows that the present theory is reasonable.展开更多
Mesoporous aluminum-doped titanium dioxide(Al-TiO2) materials with high specific surface areas were prepared via a solid-state reaction route.The properties of these materials were characterized by X-ray diffraction(X...Mesoporous aluminum-doped titanium dioxide(Al-TiO2) materials with high specific surface areas were prepared via a solid-state reaction route.The properties of these materials were characterized by X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),N2 absorption-desorption,ultraviolet visible light spectroscopy(UV-Vis) and electrochemical spectroscopy.The results show that the mesoporous structure of the product with ethanol is composed of anatase laced crystal walls with amorphous grain boundaries formed gradually by degradation.Compared with those without ethanol,these samples possess larger crystallite size since ethanol decreases the pore size at higher temperature.With the increase of ethanol amount,however,the crystallite size will grow.The amorphous grain boundaries in the mesoporous material,with a large impedance and low incidental cyclic potential,are difficult to effectively degrade and the phase transformation temperature is changed from 500 to 550℃.The growth rate of Al-TiO2 crystallites that obeys the quadratic polynomial equation may be controlled.展开更多
Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize th...Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the effect of treatment. The results of KP measurement show that the surface work function of AZO thin films can increase up to 5.92 eV after oxygen ICP (O-ICP)'s treatment, which means that the work function was increased by at least 1.1 eV. However, after the treatment of chlorine ICP (CI-ICP), the work function increased to 5.44 eV, and the increment was 0.6 eV. And 10 days later, the work function increment was still 0.4 eV after O-ICP's treatment, while the work function after Cl-ICP's treatment came back to the original value only after 48 hours. The XPS results suggested that the O-ICP treatment was more effective than CI-ICP for enhancing the work function of AZO films, which is well consistent with KP results.展开更多
In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550...In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.展开更多
Al-doped ZnO(AZO) is considered as an alternative to transparent conductive oxide materials.Patterning and achieving a stable surface are important challenges in the development and optimization of dry etching process...Al-doped ZnO(AZO) is considered as an alternative to transparent conductive oxide materials.Patterning and achieving a stable surface are important challenges in the development and optimization of dry etching processes, which must be overcome for the application of AZO in various devices. Therefore, in this study, the etch rate and surface properties of an AZO thin film after plasma etching using the adaptive coupled plasma system were investigated. The fastest etch rate was achieved with a CF_(4)/Ar ratio of 50:50 sccm. Regardless of the ratio of CF_(4) to Ar,the transmittance of the film in the visible region exceeded 80%. X-ray photoelectron spectroscopy analysis of the AZO thin film confirmed that metal-F bonding persists on the surface after plasma etching. It was also shown that F eliminates O vacancies. Consequently, the work function and bandgap energy increased as the ratio of CF-4 increased. This study not only provides information on the effect of plasma on AZO thin film, but identifies the cause of changes in the device characteristics during device fabrication.展开更多
AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC charac...AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current-gain cutoff frequency (fT) of 10 GHz and a power gain cutoff frequency (fmax) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C-V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C-V dual sweep.展开更多
We report a back-gated metal-oxide-ferroelectric-metal (MOFM) field-effect transistor (FET) with lead zirconate titanate (PZT) material, in which an Al doped zinc oxide (AZO) channel layer with an optimized do...We report a back-gated metal-oxide-ferroelectric-metal (MOFM) field-effect transistor (FET) with lead zirconate titanate (PZT) material, in which an Al doped zinc oxide (AZO) channel layer with an optimized doping concentration of 1% is applied to reduce the channel resistance of the channel layer, thus guaranteeing a large enough load capacity of the transistor. The hysteresis loops of the Pt/PZT/AZO/Ti/Pt capacitor are measured and compared with a Pt/PZT/Pt capacitor, indicating that the remnant polarization is almost 40 μC/cm^2 and the polarization is saturated at 20 V. The measured capacitance-voltage properties are analyzed as a result of the electron depletion and accumulation switching operation conducted by the modulation of PZT on AZO channel resistance caused by the switchable remnant polarization of PZT. The switching properties of the AZO channel layer are also proved by the current-voltage transfer curves measured in the back-gated MOFM ferroelectric FET, which also show a drain current switching ratio up to about 100 times.展开更多
Single phase polycrystalline samples Na0.7Co1-xAlxO2 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 030) were prepared by solid state reaction. The magnetic properties from 5 K to 300 K have been studied by dc and ac magneti...Single phase polycrystalline samples Na0.7Co1-xAlxO2 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 030) were prepared by solid state reaction. The magnetic properties from 5 K to 300 K have been studied by dc and ac magnetic susceptibility measurements. Samples with lower doping quantity (x = 0, 0.05, 0.10) showed paramagnetic behaviors, but those with higher doping quantity (x=0.20, 0.25, 0.30)showed spin-glass behaviors with a freezing temperature (Tf) of about 13 K.展开更多
Aluminum-doped zinc oxide (AZO) thin films were deposited on sapphire (002) and glass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of a...Aluminum-doped zinc oxide (AZO) thin films were deposited on sapphire (002) and glass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of an AZO target. The dependence of the photoluminescence (PL) and transmittance properties of the AZO films deposited by cosputtering and sputtering on the AZO/ZnO target power ratio, R and the O2/Ar flow ratio, r were investigated, respectively. Only a deep level emission peak appears in the PL spectra of cosputtered AZO films whereas both UV emission and deep level emission peaks are observed in the PL spectra of sputtered AZO films. The absorption edges in the transmittance spectra of the AZO films shift to the lower wavelength region as R and r increase. Effects of crystallinity, surface roughness, PL on the transmittance of the AZO films were also explained using the X-ray diffraction (XRD), atomic force microscopy (AFM), and PL analysis results.展开更多
Aluminum-doped zinc oxide (ZnO:Al), abbreviated as ZAO, is a novel and widely used transparent conductive material. The ZAO powder was synthesized by chemical coprecipitation. The ZAO ceramic sputtering target mate...Aluminum-doped zinc oxide (ZnO:Al), abbreviated as ZAO, is a novel and widely used transparent conductive material. The ZAO powder was synthesized by chemical coprecipitation. The ZAO ceramic sputtering target materials were fabricated by sintering in air, and ZAO transparent conductive films were prepared by RF magnetron sputtering on glass substrates. XRD proved that such films had an orientation of (002) crystal panel paralleled to the surface of the glass substrate. The average transmittance of the films in the visible region exceeded 80%.展开更多
Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) proc...Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO (1:1) thin film deposited at 400 ~C shows the electrical resistivity of 4.18 x 10 4 ~.cm, an electron concentration of 7.5 x 1020/cm3, and carrier mobility of 25.4 cm2/(V.s). The optical transmittances of GZO/AZO thin films are over 85%. The optical band gap energy of GZO/AZO thin films linearly decreases with increasing the AI ratio.展开更多
Aluminium doped ZnO thin films(ZnO︰Al) were deposited on transparent polymer substrates at room temperature by rf magnetron sputtering method from a ZnO target with Al2O3 of 2.0 wt%. Argon gas pressure varied from ...Aluminium doped ZnO thin films(ZnO︰Al) were deposited on transparent polymer substrates at room temperature by rf magnetron sputtering method from a ZnO target with Al2O3 of 2.0 wt%. Argon gas pressure varied from 0.5 Pa to 2.5 Pa with radio frequency power of 120 W. XRD results showed that all the ZnO︰Al films had a polycrystalline hexagonal structure and a (002) preferred orientation with the c-axis perpendicular to the substrate. The grain sizes of the films were 6.3-14.8 nm.SEM images indicated the ZnO︰Al film with low Argon gas pressure was denser and the deposition rate of the films depended strongly on the Argon gas pressure, increasing firstly and then decreasing with increasing the pressure. The highest deposition rate was 5.2 nm/min at 1 Pa. The optical transmittance of the ZnO︰Al films increased and the blue shift of the absorption edge appeared when the Argon gas pressure increased. The highest transmittance of obtained ZnO︰Al films at 2.5 Pa was about 85% in the visible region. The electrical properties of the films were worsened with the increase of the Argon gas power from 1 Pa to 2.5 Pa. The resistivity of obtained film at 1.0 Pa was 2.79×10-2 Ω·cm.展开更多
Transparent conductive aluminum doped zinc oxide(ZnO:Al,AZO) films were prepared on glass substrates by rf(radio frequency) magnetron sputtering from ZnO: 3wt% Al_2O_3 ceramic target. The effect of argon gas pre...Transparent conductive aluminum doped zinc oxide(ZnO:Al,AZO) films were prepared on glass substrates by rf(radio frequency) magnetron sputtering from ZnO: 3wt% Al_2O_3 ceramic target. The effect of argon gas pressure(PAr) was investigated with small variations to understand the influence on the electrical, optical and structural properties of the films. Structural examinations using X-ray diffraction(XRD) and scanning electron microscopy(SEM) showed that the ZnO:Al thin films were(002) oriented. The resistivity values were measured by four-point probe with the lowest resistivity of 5.76×10^(-4) Ω?cm(sheet resistance=9.6 Ω/sq. for a thickness=600 nm) obtained at the PAr of 0.3 Pa. The transmittance was achieved from ultravioletvisible(UV-VIS) spectrophotometer, 84% higher than that in the visible region for all AZO thin films. The properties of deposited thin films showed a significant dependence on the PAr.展开更多
Metal sulfides have been widely enticed as battery-type electrodes in supercapacitor devices because of their maximal theoretical capacitance.Nevertheless,their lower conductivity and ion transport kinetics can largel...Metal sulfides have been widely enticed as battery-type electrodes in supercapacitor devices because of their maximal theoretical capacitance.Nevertheless,their lower conductivity and ion transport kinetics can largely restrict their rate performance,hence the practical usage in fields of demanding high power devices.Therefore,the design of new electrodes with higher energy and power densities remains a highly challenging task.To the best of our knowledge,a novel hierarchical composite of Al-CoS_(2) on nitrogendoped graphene(NG)is prepared based on a zeolite imidazole framework using a simple and scalable hydrothermal process.In this hybrid,ultrathin Al-CoS_(2) nanosheet arrays are vertically orientated on the NG framework to limit self-aggregation,hence increasing the electrical property and cycle stability of composite.It is investigated that the Al/Co feeding ratio plays a crucial role in controlling the obtained hierarchical structure of Al-Co-S sheets and their electrode performance.Also,Al^(3+) can influence remarkably the morphology and electrochemical property of the resultant graphene composite.An effective synergism is noticed between the redox Al-CoS_(2) and NG resulting in fast electron transfer and chargingdischarging processes.Surprisingly,when the as-developed composite is utilized as a positive electrode at an applied current density of 1 A/g,a specific capacitance of 1915.8 F/g is attained with ultra-long cycle stability(96%,10,000 cycles)and an excellent retention rate(~89%).As a consequence,when a solid-state asymmetric supercapacitor(ASC)device is made by combining an Al-CoS_(2) @NG hybrid with a negative electrode made of polyaniline(PANI)derived carbon nanorods(PCNRs),it demonstrates remarkable specific capacitance(188 F/g),energy density(66.9 Wh/kg),and cyclic stability of 92%after 10,000 cycles.This may open the pathway for the application of the next-generation supercapacitors in the future.展开更多
The temperature in the high-pressure high-temperature(HPHT) synthesis is optimized to enhance the thermoelectric properties of high-density Zn O ceramic, Zn_(0.98)Al_(0.02)O. X-ray diffraction, scanning electron micro...The temperature in the high-pressure high-temperature(HPHT) synthesis is optimized to enhance the thermoelectric properties of high-density Zn O ceramic, Zn_(0.98)Al_(0.02)O. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that HPHT can be utilized to control the crystal structure and relative density of the material.High pressure can be utilized to change the energy band structure of the samples via changing the lattice constant of samples, which decreases the thermal conductivity due to the formation of a multi-scale hierarchical structure and defects. The electrical conductivity of the material reaches 6×10^(4) S/m at 373 K, and all doped samples behave as n-type semiconductors. The highest power factor(6.42 μW·cm^(-1)·K^(-2)) and dimensionless figure of merit(z T = 0.09) are obtained when Zn_(0.98)Al_(0.02)O is produced at 973 K using HPHT, which is superior to previously reported power factors for similar materials at the same temperature. Hall measurements indicate a high carrier concentration, which is the reason for the enhanced electrical performance.展开更多
M-type Al-doped strontium ferrite powders (SrA1xFe2n-xO19, n = 5.9) with nominal Al content of x = 0-2.0 are prepared by traditional ceramic technology. The phase identification of the powders, performed using x-ray...M-type Al-doped strontium ferrite powders (SrA1xFe2n-xO19, n = 5.9) with nominal Al content of x = 0-2.0 are prepared by traditional ceramic technology. The phase identification of the powders, performed using x-ray diffraction, shows the presence of purity hexaferrite structure and absence of any secondary phase. The lattice parameters decrease with increasing x. The average grain size of the powders is about 300 nm-400 nm at Al3+ ion content x = 0-2.0. The room- temperature hysteresis loops of the powders, measured by using vibrating sample magnetometer, show that the specific saturation magnetization (σs) value continuously decreases while the coercivity (Hc) value increases with increasing x, and He reaches to 9759 Oe (1 Oe = 79.5775 A/m) at x = 2.0. According to the law of approach saturation, Hc value increases with increasing Al3+ ion content, which is attributed to the saturation magnetization (Ms) decreasing more rapidly than the magnetic anisotropy constant (Kl) obtained by numerical fitting of the hysteresis loops. The distribution of Al3+ ions in the hexaferrite structure of SrAlxFe2n- xO19 is investigated by using 57Co Mtssbauer spectroscopy. The effect of Al3+ doping on static magnetic properties contributes to the improvement of magnetic anisotropy field.展开更多
Zn0.95-zAlxMn0.050 (x=0, 0.03, 0.05, and 0.07) dilute magnetic semiconductor materials have been synthesized by sol-gel auto-combustion technique. The effect of A1 doping on the structural, electrical, and magnetic ...Zn0.95-zAlxMn0.050 (x=0, 0.03, 0.05, and 0.07) dilute magnetic semiconductor materials have been synthesized by sol-gel auto-combustion technique. The effect of A1 doping on the structural, electrical, and magnetic properties has been investigated. X-ray diffraction studies demonstrate the existence of single phase characteristic hexagonal wurtzite type crystal structure, similar to the host ZnO, in all the synthesized compositions. Although, the microscopic images revealed that the grains were clustered, yet some individual grains could be seen to have hexagonal texture. Electrical resistivity was observed to decrease with the rise of temperature up to 450 ℃, depicting the characteristic semiconductor behavior. Room temperature ferromagnetic behavior was observed in all the compositions. The value of saturation magnetization increased with the increase of A1 concentration in ZnMnO system referred to the gradual enhancement of free carriers.展开更多
Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absor...Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on sub- strate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 69876043) Shanghai Insti- tute of Metallurgy, the Chinese Academy of Sciences.
文摘A series of Al-doped silicon-rich silica (AlSiO) composite films have been prepared by a dual ion beam co-sputtering method with a Al, Si and SiO2 composite target. The content of Al and Si in the films can be adjusted by changing the surface area of Al and Si of the target. Visible electroluminescence (EL) from the samples is found to have only one luminescence band peaked at 510 nm (2.4 eV). Experimental results show that the doping of Al is beneficial to reducing the onset voltage and to increasing the intensity of EL.
文摘Al-doped LiVPO4F cathode materials LiAlxV1-xPO4F were prepared by two-step reactions based on a car-bothermal reduction (CTR) process. The properties of the Al-doped LiVPO4F were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),and electrochemical measurements. XRD studies show that the Al-doped LiVPO4F has the same triclinic structure (space group p-↑1 ) as the undoped LiVPO4F. The SEM images exhibit that the particle size of Al-doped LiVPO4F is smaller than that of the undoped LiVPO4F and that the smallest particle size is only about 1 μm. The Al-doped LiVPO4F was evaluated as a cathode material for secondary lithium batteries,and exhibited an improved reversibility and cycleability,which may be attributed to the addition of Al^3+ ion by stabilizing the triclinic structure.
基金Project(20080431025) supported by Chinese Postdoctoral Science FoundationProject(08JJ3005) supported by Hunan Provincial Natural Science Foundation of ChinaProject(2007) supported by Postdoctoral Science Foundation of Central South University,China
文摘The electronic structures and elastic properties of Al-doped MoSi2 were calculated using the plane wave pseudo-potential method based on the density functional theory,in which the generalized-gradient approximation(GGA) was used to describe the exchange-correlation potential.Starting from the elastic constants,bulk modulus,shear modulus,elastic modulus and Poisson ratio of Al-doped MoSi2 were obtained by using the Hill method.The results indicate that conductivity of Al-doped MoSi2 is improved to some extent in comparison with that of pure MoSi2 due to the orbit hybridization of Mo 4d,Al 3p and Si 3p electrons.In addition,calculations show that the elastic modulus and the brittleness of Al-doped MoSi2 are smaller than those of pure MoSi2,which implies that it is feasible to toughen MoSi2 by doping Al.The agreement of the conclusion with experiment shows that the present theory is reasonable.
基金Supported by the National Natural Science Foundation of China (21061006) the Research of Natural Science and Technology Foundation of Guizhou Province ([2010]2006) the Graduate Scientific Innovation Project of Education Department of Guangxi Autonomous Region (1059330901009)
文摘Mesoporous aluminum-doped titanium dioxide(Al-TiO2) materials with high specific surface areas were prepared via a solid-state reaction route.The properties of these materials were characterized by X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),N2 absorption-desorption,ultraviolet visible light spectroscopy(UV-Vis) and electrochemical spectroscopy.The results show that the mesoporous structure of the product with ethanol is composed of anatase laced crystal walls with amorphous grain boundaries formed gradually by degradation.Compared with those without ethanol,these samples possess larger crystallite size since ethanol decreases the pore size at higher temperature.With the increase of ethanol amount,however,the crystallite size will grow.The amorphous grain boundaries in the mesoporous material,with a large impedance and low incidental cyclic potential,are difficult to effectively degrade and the phase transformation temperature is changed from 500 to 550℃.The growth rate of Al-TiO2 crystallites that obeys the quadratic polynomial equation may be controlled.
基金supported by National Natural Science Foundation of China(Nos.1100502151177017 and 11175049)+1 种基金the Fudan University Excellent Doctoral Research Program(985 Project) the Ph.D Programs Foundation of Ministry of Education of China(No.20120071110031)
文摘Al-doped zinc-oxide (AZO) thin films treated by oxygen and chlorine inductively coupled plasma (ICP) were compared. Kelvin probe (KP) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the effect of treatment. The results of KP measurement show that the surface work function of AZO thin films can increase up to 5.92 eV after oxygen ICP (O-ICP)'s treatment, which means that the work function was increased by at least 1.1 eV. However, after the treatment of chlorine ICP (CI-ICP), the work function increased to 5.44 eV, and the increment was 0.6 eV. And 10 days later, the work function increment was still 0.4 eV after O-ICP's treatment, while the work function after Cl-ICP's treatment came back to the original value only after 48 hours. The XPS results suggested that the O-ICP treatment was more effective than CI-ICP for enhancing the work function of AZO films, which is well consistent with KP results.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016501)the National Natural Science Foundation of China(Grant Nos.61574168 and 61504163)
文摘In this work, ultrathin pure HfO_2 and Al-doped HfO_2films(about 4-nm thick) are prepared by atomic layer deposition and the crystallinities of these films before and after annealing at temperatures ranging from 550℃ to 750℃ are analyzed by grazing incidence x-ray diffraction. The as-deposited pure HfO_2 and Al-doped HfO_2 films are both amorphous. After550-℃ annealing, a multiphase consisting of a few orthorhombic, monoclinic and tetragonal phases can be observed in the pure HfO_2 film while the Al-doped HfO_2 film remains amorphous. After annealing at 650℃ and above, a great number of HfO_2 tetragonal phases, a high-temperature phase with higher dielectric constant, can be stabilized in the Al-doped HfO_2 film. As a result, the dielectric constant is enhanced up to about 35. The physical mechanism of the phase transition behavior is discussed from the viewpoint of thermodynamics and kinetics.
基金supported by the National Research Foundation (NRF) of Korea (Nos. 2018R1D1A1B07051429 and 2020R1G1A1102692)。
文摘Al-doped ZnO(AZO) is considered as an alternative to transparent conductive oxide materials.Patterning and achieving a stable surface are important challenges in the development and optimization of dry etching processes, which must be overcome for the application of AZO in various devices. Therefore, in this study, the etch rate and surface properties of an AZO thin film after plasma etching using the adaptive coupled plasma system were investigated. The fastest etch rate was achieved with a CF_(4)/Ar ratio of 50:50 sccm. Regardless of the ratio of CF_(4) to Ar,the transmittance of the film in the visible region exceeded 80%. X-ray photoelectron spectroscopy analysis of the AZO thin film confirmed that metal-F bonding persists on the surface after plasma etching. It was also shown that F eliminates O vacancies. Consequently, the work function and bandgap energy increased as the ratio of CF-4 increased. This study not only provides information on the effect of plasma on AZO thin film, but identifies the cause of changes in the device characteristics during device fabrication.
基金supported by the National Key Science & Technology Special Project (Grant No. 2008ZX01002-002)the National Natural Science Foundation of China (Grant No. 61106106)the Fundamental Research Funds for the Central Universities,China (Grant Nos. K50510250003 and K50510250006)
文摘AlGaN/GaN high-electron-mobility transistors (HEMTs) with Al-doped ZnO (AZO) transparent gate electrodes are fabricated, and Ni/Au/Ni-gated HEMTs are produced in comparison. The AZO-gated HEMTs show good DC characteristics and Schottky rectifying characteristics, and the gate electrodes achieve excellent transparencies. Compared with Ni/Au/Ni-gated HEMTs, AZO-gated HEMTs show a low saturation current, high threshold voltage, high Schottky barrier height, and low gate reverse leakage current. Due to the higher gate resistivity, AZO-gated HEMTs exhibit a current-gain cutoff frequency (fT) of 10 GHz and a power gain cutoff frequency (fmax) of 5 GHz, and lower maximum oscillation frequency than Ni/Au/Ni-gated HEMTs. Moreover, the C-V characteristics are measured and the gate interface characteristics of the AZO-gated devices are investigated by a C-V dual sweep.
基金Supported by the Fundamental Research Funds for the Central Universities of China
文摘We report a back-gated metal-oxide-ferroelectric-metal (MOFM) field-effect transistor (FET) with lead zirconate titanate (PZT) material, in which an Al doped zinc oxide (AZO) channel layer with an optimized doping concentration of 1% is applied to reduce the channel resistance of the channel layer, thus guaranteeing a large enough load capacity of the transistor. The hysteresis loops of the Pt/PZT/AZO/Ti/Pt capacitor are measured and compared with a Pt/PZT/Pt capacitor, indicating that the remnant polarization is almost 40 μC/cm^2 and the polarization is saturated at 20 V. The measured capacitance-voltage properties are analyzed as a result of the electron depletion and accumulation switching operation conducted by the modulation of PZT on AZO channel resistance caused by the switchable remnant polarization of PZT. The switching properties of the AZO channel layer are also proved by the current-voltage transfer curves measured in the back-gated MOFM ferroelectric FET, which also show a drain current switching ratio up to about 100 times.
基金This work was supported by the National Science Foundation of China under Grant No. 50372052, 50430137, 50588201 the National Basic Research Program of China (973 program), under Grant No. 2007CB616906)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in UniversityAustralian Research Council under Grant No. DP0559872, DP0881739.
文摘Single phase polycrystalline samples Na0.7Co1-xAlxO2 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 030) were prepared by solid state reaction. The magnetic properties from 5 K to 300 K have been studied by dc and ac magnetic susceptibility measurements. Samples with lower doping quantity (x = 0, 0.05, 0.10) showed paramagnetic behaviors, but those with higher doping quantity (x=0.20, 0.25, 0.30)showed spin-glass behaviors with a freezing temperature (Tf) of about 13 K.
文摘Aluminum-doped zinc oxide (AZO) thin films were deposited on sapphire (002) and glass substrates by two different sputtering techniques radio frequency magnetron cosputtering of AZO and ZnO targets and sputtering of an AZO target. The dependence of the photoluminescence (PL) and transmittance properties of the AZO films deposited by cosputtering and sputtering on the AZO/ZnO target power ratio, R and the O2/Ar flow ratio, r were investigated, respectively. Only a deep level emission peak appears in the PL spectra of cosputtered AZO films whereas both UV emission and deep level emission peaks are observed in the PL spectra of sputtered AZO films. The absorption edges in the transmittance spectra of the AZO films shift to the lower wavelength region as R and r increase. Effects of crystallinity, surface roughness, PL on the transmittance of the AZO films were also explained using the X-ray diffraction (XRD), atomic force microscopy (AFM), and PL analysis results.
文摘Aluminum-doped zinc oxide (ZnO:Al), abbreviated as ZAO, is a novel and widely used transparent conductive material. The ZAO powder was synthesized by chemical coprecipitation. The ZAO ceramic sputtering target materials were fabricated by sintering in air, and ZAO transparent conductive films were prepared by RF magnetron sputtering on glass substrates. XRD proved that such films had an orientation of (002) crystal panel paralleled to the surface of the glass substrate. The average transmittance of the films in the visible region exceeded 80%.
基金supported by the Yeungnam University Research Grants in 2009
文摘Multilayer gallium and aluminum doped ZnO (GZO/AZO) films were fabricated by alternative deposition of Ga-doped zinc oxide(GZO) and Al-doped zinc oxide(AZO) thin film by using pulsed laser deposition(PLD) process. The electrical and optical properties of these GZO/AZO thin films were investigated and compared with those of GZO and AZO thin films. The GZO/AZO (1:1) thin film deposited at 400 ~C shows the electrical resistivity of 4.18 x 10 4 ~.cm, an electron concentration of 7.5 x 1020/cm3, and carrier mobility of 25.4 cm2/(V.s). The optical transmittances of GZO/AZO thin films are over 85%. The optical band gap energy of GZO/AZO thin films linearly decreases with increasing the AI ratio.
基金Funded by Key Project of Natural Science Foundation of Hubei Province(No.2008CDA025)
文摘Aluminium doped ZnO thin films(ZnO︰Al) were deposited on transparent polymer substrates at room temperature by rf magnetron sputtering method from a ZnO target with Al2O3 of 2.0 wt%. Argon gas pressure varied from 0.5 Pa to 2.5 Pa with radio frequency power of 120 W. XRD results showed that all the ZnO︰Al films had a polycrystalline hexagonal structure and a (002) preferred orientation with the c-axis perpendicular to the substrate. The grain sizes of the films were 6.3-14.8 nm.SEM images indicated the ZnO︰Al film with low Argon gas pressure was denser and the deposition rate of the films depended strongly on the Argon gas pressure, increasing firstly and then decreasing with increasing the pressure. The highest deposition rate was 5.2 nm/min at 1 Pa. The optical transmittance of the ZnO︰Al films increased and the blue shift of the absorption edge appeared when the Argon gas pressure increased. The highest transmittance of obtained ZnO︰Al films at 2.5 Pa was about 85% in the visible region. The electrical properties of the films were worsened with the increase of the Argon gas power from 1 Pa to 2.5 Pa. The resistivity of obtained film at 1.0 Pa was 2.79×10-2 Ω·cm.
基金Funded by the Key Projects in the National Science&Technology Pillar Program during the Twelfth Five-year Plan Period(No.2011BAJ04B04)
文摘Transparent conductive aluminum doped zinc oxide(ZnO:Al,AZO) films were prepared on glass substrates by rf(radio frequency) magnetron sputtering from ZnO: 3wt% Al_2O_3 ceramic target. The effect of argon gas pressure(PAr) was investigated with small variations to understand the influence on the electrical, optical and structural properties of the films. Structural examinations using X-ray diffraction(XRD) and scanning electron microscopy(SEM) showed that the ZnO:Al thin films were(002) oriented. The resistivity values were measured by four-point probe with the lowest resistivity of 5.76×10^(-4) Ω?cm(sheet resistance=9.6 Ω/sq. for a thickness=600 nm) obtained at the PAr of 0.3 Pa. The transmittance was achieved from ultravioletvisible(UV-VIS) spectrophotometer, 84% higher than that in the visible region for all AZO thin films. The properties of deposited thin films showed a significant dependence on the PAr.
基金supported by the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1l1A3A010638331,NRF-2021R1I1A1A01059870 and NRF-2022R1I1A1A01069960)the Hannam University research fund in 2022+4 种基金the Marie Sklodowska-Curie grant agreement(801538)the CONEX-Plus program at the Universidad CarlosⅢde Madridthe European Union’s Horizon 2020 research and innovation programmeAbdolkhaled Mohammadi(Universitéde Montpellier,France)Pranay Barkataki(Sony R&D,India)for fruitful discussion and support。
文摘Metal sulfides have been widely enticed as battery-type electrodes in supercapacitor devices because of their maximal theoretical capacitance.Nevertheless,their lower conductivity and ion transport kinetics can largely restrict their rate performance,hence the practical usage in fields of demanding high power devices.Therefore,the design of new electrodes with higher energy and power densities remains a highly challenging task.To the best of our knowledge,a novel hierarchical composite of Al-CoS_(2) on nitrogendoped graphene(NG)is prepared based on a zeolite imidazole framework using a simple and scalable hydrothermal process.In this hybrid,ultrathin Al-CoS_(2) nanosheet arrays are vertically orientated on the NG framework to limit self-aggregation,hence increasing the electrical property and cycle stability of composite.It is investigated that the Al/Co feeding ratio plays a crucial role in controlling the obtained hierarchical structure of Al-Co-S sheets and their electrode performance.Also,Al^(3+) can influence remarkably the morphology and electrochemical property of the resultant graphene composite.An effective synergism is noticed between the redox Al-CoS_(2) and NG resulting in fast electron transfer and chargingdischarging processes.Surprisingly,when the as-developed composite is utilized as a positive electrode at an applied current density of 1 A/g,a specific capacitance of 1915.8 F/g is attained with ultra-long cycle stability(96%,10,000 cycles)and an excellent retention rate(~89%).As a consequence,when a solid-state asymmetric supercapacitor(ASC)device is made by combining an Al-CoS_(2) @NG hybrid with a negative electrode made of polyaniline(PANI)derived carbon nanorods(PCNRs),it demonstrates remarkable specific capacitance(188 F/g),energy density(66.9 Wh/kg),and cyclic stability of 92%after 10,000 cycles.This may open the pathway for the application of the next-generation supercapacitors in the future.
基金Project supported by the National Natural Science Foundation of China(Grant No.51171070)the Project of Jilin Science and Technology Development Plan,China(Grant No.20170101045JC)。
文摘The temperature in the high-pressure high-temperature(HPHT) synthesis is optimized to enhance the thermoelectric properties of high-density Zn O ceramic, Zn_(0.98)Al_(0.02)O. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy show that HPHT can be utilized to control the crystal structure and relative density of the material.High pressure can be utilized to change the energy band structure of the samples via changing the lattice constant of samples, which decreases the thermal conductivity due to the formation of a multi-scale hierarchical structure and defects. The electrical conductivity of the material reaches 6×10^(4) S/m at 373 K, and all doped samples behave as n-type semiconductors. The highest power factor(6.42 μW·cm^(-1)·K^(-2)) and dimensionless figure of merit(z T = 0.09) are obtained when Zn_(0.98)Al_(0.02)O is produced at 973 K using HPHT, which is superior to previously reported power factors for similar materials at the same temperature. Hall measurements indicate a high carrier concentration, which is the reason for the enhanced electrical performance.
文摘M-type Al-doped strontium ferrite powders (SrA1xFe2n-xO19, n = 5.9) with nominal Al content of x = 0-2.0 are prepared by traditional ceramic technology. The phase identification of the powders, performed using x-ray diffraction, shows the presence of purity hexaferrite structure and absence of any secondary phase. The lattice parameters decrease with increasing x. The average grain size of the powders is about 300 nm-400 nm at Al3+ ion content x = 0-2.0. The room- temperature hysteresis loops of the powders, measured by using vibrating sample magnetometer, show that the specific saturation magnetization (σs) value continuously decreases while the coercivity (Hc) value increases with increasing x, and He reaches to 9759 Oe (1 Oe = 79.5775 A/m) at x = 2.0. According to the law of approach saturation, Hc value increases with increasing Al3+ ion content, which is attributed to the saturation magnetization (Ms) decreasing more rapidly than the magnetic anisotropy constant (Kl) obtained by numerical fitting of the hysteresis loops. The distribution of Al3+ ions in the hexaferrite structure of SrAlxFe2n- xO19 is investigated by using 57Co Mtssbauer spectroscopy. The effect of Al3+ doping on static magnetic properties contributes to the improvement of magnetic anisotropy field.
文摘Zn0.95-zAlxMn0.050 (x=0, 0.03, 0.05, and 0.07) dilute magnetic semiconductor materials have been synthesized by sol-gel auto-combustion technique. The effect of A1 doping on the structural, electrical, and magnetic properties has been investigated. X-ray diffraction studies demonstrate the existence of single phase characteristic hexagonal wurtzite type crystal structure, similar to the host ZnO, in all the synthesized compositions. Although, the microscopic images revealed that the grains were clustered, yet some individual grains could be seen to have hexagonal texture. Electrical resistivity was observed to decrease with the rise of temperature up to 450 ℃, depicting the characteristic semiconductor behavior. Room temperature ferromagnetic behavior was observed in all the compositions. The value of saturation magnetization increased with the increase of A1 concentration in ZnMnO system referred to the gradual enhancement of free carriers.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00706 and 2011CBA00707)the High-Technology Research and Development Program of China(Grant No.2013AA050302)+2 种基金the Science and Technology Support Program of Tianjin City,China(Grant No.12ZCZDGX03600)the Major Science and Technology Support Project of Tianjin City,China(Grant No.11TXSYGX22100)the Specialized Research Fund for the Ph.D.Program of Higher Education,China(Grant No.20120031110039)
文摘Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their appli- cations in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on sub- strate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.