The precipitation behaviours of Al3Zr precipitate in the Al-Cu-Zr and Al-Cu-Zr-Ti-V alloys were studied by transmission electron microscopy. Metastable Al3Zr precipitates are homogeneously nucleated in dendrite centre...The precipitation behaviours of Al3Zr precipitate in the Al-Cu-Zr and Al-Cu-Zr-Ti-V alloys were studied by transmission electron microscopy. Metastable Al3Zr precipitates are homogeneously nucleated in dendrite centres resulting in homogeneous distribution. However, the precipitation in the interdendritic regions is complex and the precipitation morphologies, helical-like and stripe-like shapes, were observed, which are composed of many spherical Al3Zr precipitates. The stripe-like precipitate clusters have preferential orientations along with the -100- Al directions, which is inferred to be related to θ′(Al2Cu) and θ phases. Addition of Cu can accelerate the L12→D023 structural transformation of the Al3Zr precipitate.展开更多
The influence of annealing cycles up to 650 °C on the specific conductivity and hardness(HV) of hot-rolled sheets of Al alloys containing up to 0.5% Zr(mass fraction) was studied.Using analytical calculations...The influence of annealing cycles up to 650 °C on the specific conductivity and hardness(HV) of hot-rolled sheets of Al alloys containing up to 0.5% Zr(mass fraction) was studied.Using analytical calculations of phase composition and experimental methods(scanning electron microscopy,transmission electron microscopy,electron microprobe analysis,etc),it is demonstrated that the conductivity depends on the content of Zr in the Al solid solution which is the minimum after holding at 450 °C for 3 h.On the other hand,the hardness of the alloy is mainly caused by the amount of nanoparticles of the L12(Al3Zr) phase that defines the retention of strain hardening.It is shown that the best combination of electrical conductivity and hardness values can be reached within an acceptable holding time at the temperature about 450 °C.展开更多
The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission e...The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that with the increase of homogenization time from 48 h to 384 h, quench sensitivity increased slightly as the largest difference in the hardness was increased from 5.2% to 6.9% in the end-quenched and aged specimens. Prolonging homogenization had little effect on the grain structure, but improved the dissolution of soluble T phase and resulted in larger Al3Zr dispersoids with a low number density. Some small quench-induced η phase particles on Al3Zr dispersoids were observed inside grains during slow quenching, which decreased hardness after subsequent aging. The change in the character of Al3Zr dispersoids exerted slight influence on quench sensitivity.展开更多
基金Project (CDJZR12130048) supported by the Fundamental Research Funds for the Central Universities, ChinaProject supported by a Grant from the French Norwegian Foundation for Scientific and Technological Research and Industrial Development
文摘The precipitation behaviours of Al3Zr precipitate in the Al-Cu-Zr and Al-Cu-Zr-Ti-V alloys were studied by transmission electron microscopy. Metastable Al3Zr precipitates are homogeneously nucleated in dendrite centres resulting in homogeneous distribution. However, the precipitation in the interdendritic regions is complex and the precipitation morphologies, helical-like and stripe-like shapes, were observed, which are composed of many spherical Al3Zr precipitates. The stripe-like precipitate clusters have preferential orientations along with the -100- Al directions, which is inferred to be related to θ′(Al2Cu) and θ phases. Addition of Cu can accelerate the L12→D023 structural transformation of the Al3Zr precipitate.
基金Project(RMEF157814X0004)supported by the Ministry of Education and Science of the Russian Federation
文摘The influence of annealing cycles up to 650 °C on the specific conductivity and hardness(HV) of hot-rolled sheets of Al alloys containing up to 0.5% Zr(mass fraction) was studied.Using analytical calculations of phase composition and experimental methods(scanning electron microscopy,transmission electron microscopy,electron microprobe analysis,etc),it is demonstrated that the conductivity depends on the content of Zr in the Al solid solution which is the minimum after holding at 450 °C for 3 h.On the other hand,the hardness of the alloy is mainly caused by the amount of nanoparticles of the L12(Al3Zr) phase that defines the retention of strain hardening.It is shown that the best combination of electrical conductivity and hardness values can be reached within an acceptable holding time at the temperature about 450 °C.
基金Project(2012CB619500)supported by the National Basic Research Program of ChinaProject supported by Yuying Project of Central South University
文摘The effect of homogenization time on quench sensitivity of a cast 7085 aluminum alloy was investigated by means of end-quenching test, optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that with the increase of homogenization time from 48 h to 384 h, quench sensitivity increased slightly as the largest difference in the hardness was increased from 5.2% to 6.9% in the end-quenched and aged specimens. Prolonging homogenization had little effect on the grain structure, but improved the dissolution of soluble T phase and resulted in larger Al3Zr dispersoids with a low number density. Some small quench-induced η phase particles on Al3Zr dispersoids were observed inside grains during slow quenching, which decreased hardness after subsequent aging. The change in the character of Al3Zr dispersoids exerted slight influence on quench sensitivity.