Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integratin...Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.展开更多
Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands i...Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands is key to making appropriate forest management decisions to limit damage and prevent the spread of mistletoe in the future.Therefore,the main objective of this study was to determine the probability of mistletoe occurrence in Scots pine stands in relation to stand-related endogenous factors such as age,top height,and stand density,as well as topographic and edaphic factors.We used unmanned aerial vehicle(UAV)imagery from 2,247 stands to detect mistletoe in Scots pine stands,while majority stand and site characteristics were calculated from airborne laser scanning(ALS)data.Information on stand age and site type from the State Forest database were also used.We found that mistletoe infestation in Scots pine stands is influenced by stand and site characteristics.We documented that the densest,tallest,and oldest stands were more susceptible to mistletoe infestation.Site type and specific microsite conditions associated with topography were also important factors driving mistletoe occurrence.In addition,climatic water balance was a significant factor in increasing the probability of mistletoe occurrence,which is important in the context of predicted temperature increases associated with climate change.Our results are important for better understanding patterns of mistletoe infestation and ecosystem functioning under climate change.In an era of climate change and technological development,the use of remote sensing methods to determine the risk of mistletoe infestation can be a very useful tool for managing forest ecosystems to maintain forest sustainability and prevent forest disturbance.展开更多
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan...Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.展开更多
Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves ...Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.展开更多
随着互联网技术的飞速发展,大数据时代已经来临。在该背景下,如何有效地利用海量数据为读者提供个性化的书籍推荐成为一个亟待解决的问题。文章将介绍一个基于大数据的书籍推荐分析系统的设计与实现。该系统通过采用大数据技术和数据可...随着互联网技术的飞速发展,大数据时代已经来临。在该背景下,如何有效地利用海量数据为读者提供个性化的书籍推荐成为一个亟待解决的问题。文章将介绍一个基于大数据的书籍推荐分析系统的设计与实现。该系统通过采用大数据技术和数据可视化技术,采集书籍数据并对书籍数据进行可视化展示,同时收集、存储和处理读者的搜索行为数据、阅读历史等,运用ALS(Alternating Least Squares)协同过滤算法实现书籍推荐,从而为用户推荐感兴趣的书籍。该系统不仅提高了用户的阅读满足感,也为用户提供了更加精准、个性化的阅读推荐服务。展开更多
基金funded by National Key Research and Development Program(2023YFD220080430&2017YFD0600404)。
文摘Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.
基金funded by National Science Centre,Poland under the project"Assessment of the impact of weather conditions on forest health status and forest disturbances at regional and national scale based on the integration of ground and space-based remote sensing datasets"(project no.2021/41/B/ST10/)Data collection and research was also supported by the project no.EZ.271.3.19.2021"Modele ryzyka zamierania drzewostanow glownych gatunkow lasotworczych Polski"funded by the General Directorate of State Forests in Poland。
文摘Over the past decade,the presence of mistletoe(Viscum album ssp.austriacum)in Scots pine stands has increased in many European countries.Understanding the factors that influence the occurrence of mistletoe in stands is key to making appropriate forest management decisions to limit damage and prevent the spread of mistletoe in the future.Therefore,the main objective of this study was to determine the probability of mistletoe occurrence in Scots pine stands in relation to stand-related endogenous factors such as age,top height,and stand density,as well as topographic and edaphic factors.We used unmanned aerial vehicle(UAV)imagery from 2,247 stands to detect mistletoe in Scots pine stands,while majority stand and site characteristics were calculated from airborne laser scanning(ALS)data.Information on stand age and site type from the State Forest database were also used.We found that mistletoe infestation in Scots pine stands is influenced by stand and site characteristics.We documented that the densest,tallest,and oldest stands were more susceptible to mistletoe infestation.Site type and specific microsite conditions associated with topography were also important factors driving mistletoe occurrence.In addition,climatic water balance was a significant factor in increasing the probability of mistletoe occurrence,which is important in the context of predicted temperature increases associated with climate change.Our results are important for better understanding patterns of mistletoe infestation and ecosystem functioning under climate change.In an era of climate change and technological development,the use of remote sensing methods to determine the risk of mistletoe infestation can be a very useful tool for managing forest ecosystems to maintain forest sustainability and prevent forest disturbance.
基金funded by NIH-NIA R01AG061708 (to PHO)Patrick Grange Memorial Foundation (to PHO)+1 种基金A Long Swim (to PHO)CureSPG4 Foundation (to PHO)。
文摘Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
文摘Amyotrophic lateral sclerosis(ALS)is a neuromuscular condition resulting from the progressive degeneration of motor neurons in the cortex,brainstem,and spinal cord.While the typical clinical phenotype of ALS involves both upper and lower motor neurons,human and animal studies over the years have highlighted the potential spread to other motor and non-motor regions,expanding the phenotype of ALS.Although superoxide dismutase 1(SOD1)mutations represent a minority of ALS cases,the SOD1 gene remains a milestone in ALS research as it represents the first genetic target for personalized therapies.Despite numerous single case reports or case series exhibiting extramotor symptoms in patients with ALS mutations in SOD1(SOD1-ALS),no studies have comprehensively explored the full spectrum of extramotor neurological manifestations in this subpopulation.In this narrative review,we analyze and discuss the available literature on extrapyramidal and non-motor features during SOD1-ALS.The multifaceted expression of SOD1 could deepen our understanding of the pathogenic mechanisms,pointing towards a multidisciplinary approach for affected patients in light of new therapeutic strategies for SOD1-ALS.
文摘随着互联网技术的飞速发展,大数据时代已经来临。在该背景下,如何有效地利用海量数据为读者提供个性化的书籍推荐成为一个亟待解决的问题。文章将介绍一个基于大数据的书籍推荐分析系统的设计与实现。该系统通过采用大数据技术和数据可视化技术,采集书籍数据并对书籍数据进行可视化展示,同时收集、存储和处理读者的搜索行为数据、阅读历史等,运用ALS(Alternating Least Squares)协同过滤算法实现书籍推荐,从而为用户推荐感兴趣的书籍。该系统不仅提高了用户的阅读满足感,也为用户提供了更加精准、个性化的阅读推荐服务。