旨在构建ALV-J受体分子chNHE1精准基因编辑细胞系,本研究利用荧光标记的CRISPR/Cas9系统,在DF-1细胞中将chNHE1介导ALV-J进入宿主细胞的关键氨基酸V33进行突变,W38进行缺失,同时将编码第34-37位氨基酸的密码子同义替换。通过流式细胞分...旨在构建ALV-J受体分子chNHE1精准基因编辑细胞系,本研究利用荧光标记的CRISPR/Cas9系统,在DF-1细胞中将chNHE1介导ALV-J进入宿主细胞的关键氨基酸V33进行突变,W38进行缺失,同时将编码第34-37位氨基酸的密码子同义替换。通过流式细胞分选获得48株单克隆细胞系,PCR及测序分析结果显示,其中有14株单克隆细胞系的chNHE1成功发生V33突变、W38缺失以及34-37位氨基酸的密码子同义替换,基因编辑效率为29%。为了验证chNHE1基因编辑DF-1细胞系的遗传稳定性及增殖水平,对传至第25代的细胞系进行测序分析,结果显示,chNHE1基因未发生回复性突变;进一步细胞计数分析结果显示,chNHE1基因编辑细胞系增殖水平未受到影响;为了评价chNHE1基因编辑细胞系抗ALV-J感染的能力,分别利用ALV-J荧光报告病毒(ALV-J-GFP)及ALV-J原型毒株(HPRS-103)对其进行病毒感染试验,荧光观察结果及流式细胞分析结果显示,chNHE1基因编辑细胞系可完全抵抗0.1 MOI ALV-J-GFP的感染;进一步间接免疫荧光试验、PCR扩增试验以及病毒滴度测定试验结果显示,chNHE1基因编辑细胞系可完全抵抗0.1 MOI HPRS-103毒株及0.1 MOI JL08CH3-1毒株的感染。本研究利用荧光标记的CRISPR/Cas9系统结合流式细胞分选,成功构建了chNHE1基因编辑细胞系,其可完全抵抗ALV-J的感染,且该细胞系遗传稳定性及增殖活性良好,为建立抗ALV-J感染的新技术提供了理论支持及基因编辑靶点。展开更多
Differences in the imaging subgroups of cerebral small vessel disease(CSVD)need to be further explored.First,we use propensity score matching to obtain balanced datasets.Then random forest(RF)is adopted to classify th...Differences in the imaging subgroups of cerebral small vessel disease(CSVD)need to be further explored.First,we use propensity score matching to obtain balanced datasets.Then random forest(RF)is adopted to classify the subgroups compared with support vector machine(SVM)and extreme gradient boosting(XGBoost),and to select the features.The top 10 important features are included in the stepwise logistic regression,and the odds ratio(OR)and 95%confidence interval(CI)are obtained.There are 41290 adult inpatient records diagnosed with CSVD.Accuracy and area under curve(AUC)of RF are close to 0.7,which performs best in classification compared to SVM and XGBoost.OR and 95%CI of hematocrit for white matter lesions(WMLs),lacunes,microbleeds,atrophy,and enlarged perivascular space(EPVS)are 0.9875(0.9857−0.9893),0.9728(0.9705−0.9752),0.9782(0.9740−0.9824),1.0093(1.0081−1.0106),and 0.9716(0.9597−0.9832).OR and 95%CI of red cell distribution width for WMLs,lacunes,atrophy,and EPVS are 0.9600(0.9538−0.9662),0.9630(0.9559−0.9702),1.0751(1.0686−1.0817),and 0.9304(0.8864−0.9755).OR and 95%CI of platelet distribution width for WMLs,lacunes,and microbleeds are 1.1796(1.1636−1.1958),1.1663(1.1476−1.1853),and 1.0416(1.0152−1.0687).This study proposes a new analytical framework to select important clinical markers for CSVD with machine learning based on a common data model,which has low cost,fast speed,large sample size,and continuous data sources.展开更多
Recently,fuzzy multi-sets have come to the forefront of scientists’interest and have been used in algebraic structures such asmulti-groups,multirings,anti-fuzzy multigroup and(α,γ)-anti-fuzzy subgroups.In this pape...Recently,fuzzy multi-sets have come to the forefront of scientists’interest and have been used in algebraic structures such asmulti-groups,multirings,anti-fuzzy multigroup and(α,γ)-anti-fuzzy subgroups.In this paper,we first summarize the knowledge about the algebraic structure of fuzzy multi-sets such as(α,γ)-anti-multi-fuzzy subgroups.In a way,the notion of anti-fuzzy multigroup is an application of anti-fuzzy multi sets to the theory of group.The concept of anti-fuzzy multigroup is a complement of an algebraic structure of a fuzzy multi set that generalizes both the theories of classical group and fuzzy group.The aim of this paper is to highlight the connection between fuzzy multi-sets and algebraic structures from an anti-fuzzification point of view.Therefore,in this paper,we define(α,γ)-antimulti-fuzzy subgroups,(α,γ)-anti-multi-fuzzy normal subgroups,(α,γ)-antimulti-fuzzy homomorphism on(α,γ)-anti-multi-fuzzy subgroups and these been explicated some algebraic structures.Then,we introduce the concept(α,γ)-anti-multi-fuzzy subgroups and(α,γ)-anti-multi-fuzzy normal subgroups and of their properties.This new concept of homomorphism as a bridge among set theory,fuzzy set theory,anti-fuzzy multi sets theory and group theory and also shows the effect of anti-fuzzy multi sets on a group structure.Certain results that discuss the(α,γ)cuts of anti-fuzzy multigroup are explored.展开更多
文摘旨在构建ALV-J受体分子chNHE1精准基因编辑细胞系,本研究利用荧光标记的CRISPR/Cas9系统,在DF-1细胞中将chNHE1介导ALV-J进入宿主细胞的关键氨基酸V33进行突变,W38进行缺失,同时将编码第34-37位氨基酸的密码子同义替换。通过流式细胞分选获得48株单克隆细胞系,PCR及测序分析结果显示,其中有14株单克隆细胞系的chNHE1成功发生V33突变、W38缺失以及34-37位氨基酸的密码子同义替换,基因编辑效率为29%。为了验证chNHE1基因编辑DF-1细胞系的遗传稳定性及增殖水平,对传至第25代的细胞系进行测序分析,结果显示,chNHE1基因未发生回复性突变;进一步细胞计数分析结果显示,chNHE1基因编辑细胞系增殖水平未受到影响;为了评价chNHE1基因编辑细胞系抗ALV-J感染的能力,分别利用ALV-J荧光报告病毒(ALV-J-GFP)及ALV-J原型毒株(HPRS-103)对其进行病毒感染试验,荧光观察结果及流式细胞分析结果显示,chNHE1基因编辑细胞系可完全抵抗0.1 MOI ALV-J-GFP的感染;进一步间接免疫荧光试验、PCR扩增试验以及病毒滴度测定试验结果显示,chNHE1基因编辑细胞系可完全抵抗0.1 MOI HPRS-103毒株及0.1 MOI JL08CH3-1毒株的感染。本研究利用荧光标记的CRISPR/Cas9系统结合流式细胞分选,成功构建了chNHE1基因编辑细胞系,其可完全抵抗ALV-J的感染,且该细胞系遗传稳定性及增殖活性良好,为建立抗ALV-J感染的新技术提供了理论支持及基因编辑靶点。
基金supported by the National Natural Science Foundation of China(Nos.72204169 and 81825007)Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910025030)+5 种基金Capital’s Funds for Health Improvement and Research(No.2022-2-2045)National Key R&D Program of China(Nos.2022YFF15015002022YFF1501501,2022YFF1501502,2022YFF1501503,2022YFF1501504,and 2022YFF1501505)Youth Beijing Scholar Program(No.010)Beijing Laboratory of Oral Health(No.PXM2021_014226_000041)Beijing Talent Project-Class A:Innovation and Development(No.2018A12)National Ten-Thousand Talent PlanLeadership of Scientific and Technological Innovation,and National Key R&D Program of China(Nos.2017YFC1307900 and 2017YFC1307905).
文摘Differences in the imaging subgroups of cerebral small vessel disease(CSVD)need to be further explored.First,we use propensity score matching to obtain balanced datasets.Then random forest(RF)is adopted to classify the subgroups compared with support vector machine(SVM)and extreme gradient boosting(XGBoost),and to select the features.The top 10 important features are included in the stepwise logistic regression,and the odds ratio(OR)and 95%confidence interval(CI)are obtained.There are 41290 adult inpatient records diagnosed with CSVD.Accuracy and area under curve(AUC)of RF are close to 0.7,which performs best in classification compared to SVM and XGBoost.OR and 95%CI of hematocrit for white matter lesions(WMLs),lacunes,microbleeds,atrophy,and enlarged perivascular space(EPVS)are 0.9875(0.9857−0.9893),0.9728(0.9705−0.9752),0.9782(0.9740−0.9824),1.0093(1.0081−1.0106),and 0.9716(0.9597−0.9832).OR and 95%CI of red cell distribution width for WMLs,lacunes,atrophy,and EPVS are 0.9600(0.9538−0.9662),0.9630(0.9559−0.9702),1.0751(1.0686−1.0817),and 0.9304(0.8864−0.9755).OR and 95%CI of platelet distribution width for WMLs,lacunes,and microbleeds are 1.1796(1.1636−1.1958),1.1663(1.1476−1.1853),and 1.0416(1.0152−1.0687).This study proposes a new analytical framework to select important clinical markers for CSVD with machine learning based on a common data model,which has low cost,fast speed,large sample size,and continuous data sources.
基金Yibin University Pre-research Project,Research on the coupling and coordinated development ofmanufacturing and logistics industry under the background of intelligentmanufacturing,(2022YY001)Sichuan ProvincialDepartment of EducationWater Transport EconomicResearch Center,Research on the Development Path and Countermeasures of the Advanced Manufacturing Industry in the Sanjiang New District of Yibin under a“dual circulation”development pattern(SYJJ2020A06).
文摘Recently,fuzzy multi-sets have come to the forefront of scientists’interest and have been used in algebraic structures such asmulti-groups,multirings,anti-fuzzy multigroup and(α,γ)-anti-fuzzy subgroups.In this paper,we first summarize the knowledge about the algebraic structure of fuzzy multi-sets such as(α,γ)-anti-multi-fuzzy subgroups.In a way,the notion of anti-fuzzy multigroup is an application of anti-fuzzy multi sets to the theory of group.The concept of anti-fuzzy multigroup is a complement of an algebraic structure of a fuzzy multi set that generalizes both the theories of classical group and fuzzy group.The aim of this paper is to highlight the connection between fuzzy multi-sets and algebraic structures from an anti-fuzzification point of view.Therefore,in this paper,we define(α,γ)-antimulti-fuzzy subgroups,(α,γ)-anti-multi-fuzzy normal subgroups,(α,γ)-antimulti-fuzzy homomorphism on(α,γ)-anti-multi-fuzzy subgroups and these been explicated some algebraic structures.Then,we introduce the concept(α,γ)-anti-multi-fuzzy subgroups and(α,γ)-anti-multi-fuzzy normal subgroups and of their properties.This new concept of homomorphism as a bridge among set theory,fuzzy set theory,anti-fuzzy multi sets theory and group theory and also shows the effect of anti-fuzzy multi sets on a group structure.Certain results that discuss the(α,γ)cuts of anti-fuzzy multigroup are explored.