El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation an...El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.展开更多
Small signal equivalent circuit model and modulation properties of vertical cavity surface emitting lasers(VCSEL's) are presented.The modulation properties both in analytic equation calculation and in circuit mo...Small signal equivalent circuit model and modulation properties of vertical cavity surface emitting lasers(VCSEL's) are presented.The modulation properties both in analytic equation calculation and in circuit model simulation are studied.The analytic equation calculation of the modulation properties is calculated by using Mathcad program and the circuit model simulation is simulated by using Pspice program respectively.The results of calculation and the simulation are in good agreement with each other.Experiment is performed to testify the circuit model.展开更多
Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognitio...Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognition method is proposed in this paper. Because of the better noise suppression ability of the GAR model and the powerful pattern classification capacity of the MLP neural network classifier, the new method can significantly improve the recognition performance in lower SNR with better robustness. To assess the performance of the new method, computer simulations are also performed.展开更多
In this paper,a magnetic field modulation model considering the influence of phase angles is established for the analysis and weakening of the cogging torque of the permanent magnet synchronous wind generations.Compar...In this paper,a magnetic field modulation model considering the influence of phase angles is established for the analysis and weakening of the cogging torque of the permanent magnet synchronous wind generations.Compared with the existing analytical model,the modulation effect of the magnetic field harmonics and phase angle on the cogging torque components is analyzed in the new model.Firstly,flux density model with phase angle characteristics is derived,and the relationship of the cogging torque and magnetic field harmonic is analyzed using energy method.Then,based on the magnetic modulation mechanism,the impact of the phase angle and magnetic field harmonics on the coupling relationship among cogging torque components is analyzed.All cogging torque components are classified as a combination of multiple positive and negative harmonic components,and the contribution characteristics of the components are determined by the harmonic combination and phase angle characteristics.Based on the finite element model(FEM),the magnetic field modulation model of the cogging torque is proved.On the basis of the conclusions obtained,it is further explained that the suppression mechanism of rotor-step skewing is a mutual complementary effect of the positive components and negative cogging components,and the main harmonic is effectively offset by selecting the seasonable of segment number and skewed angle of rotor.Finally,in order to verify the validity of the analysis method,the no-load line back EMF and cogging torque of optimized prototype is tested,and the experimental results agree well with the FEM results.展开更多
The state space average model and the large signal models of Pulse Skip Modulation (PSM) mode are given in this paper. Farther more, based on these models and simulations of PSM converter circuits, the analysis of t...The state space average model and the large signal models of Pulse Skip Modulation (PSM) mode are given in this paper. Farther more, based on these models and simulations of PSM converter circuits, the analysis of the characteristics of PSM converter is described in this paper, of which include efficiency, frequency spectrum analysis, output voltage ripple, response speed and interference rejection capability. Compared with PWM control mode, PSM converter has high efficiency, especially with fight loads, quick response, good interference rejection and good EMC characteristic. Improved PSM slightly, it could be a kind of good independent regulating mode during the whole operating process for a DC-DC converter. Finally, some experimental results are also presented in this paper.展开更多
he paper focuses on the turbulence modulation problem in gas–particle flow with the use of probability density function(PDF) approach. By means of the PDF method, a general statistical moment turbulence modulation ...he paper focuses on the turbulence modulation problem in gas–particle flow with the use of probability density function(PDF) approach. By means of the PDF method, a general statistical moment turbulence modulation model without considering the trajectory difference between two phases is derived from the Navier–Stokes equations. A new turbulence production term induced by the dispersed-phase is analyzed and considered. Furthermore, the trajectory difference between two media is taken into account. Subsequently, a new k–ε turbulence modulation model in dilute particle-laden flow is successfully set up. Then, the changes to several terms, including the turbulence production, dissipation, and diffusion terms, are well described consequently. The promoted model provides a more probable explanation for the modification of particles on the turbulence. Finally, we applied the model to simulate a gas–particle turbulence flow case in a wall jet, and found that the simulation results agree well with the experimental data.展开更多
It is well known that subtle changes in structure and tissue composition of articular cartilage can lead to its degeneration. The present paper puts forward a modified layered inhomogeneous triphasic model with four p...It is well known that subtle changes in structure and tissue composition of articular cartilage can lead to its degeneration. The present paper puts forward a modified layered inhomogeneous triphasic model with four parameters based on the inhomogeneous triphasic model proposed by Narmoneva et al. Incorporating a piecewise fitting optimization criterion, the new model was used to obtain the uniaxial modulus Ha, and predict swelling pattern for the articular cartilage based on ultrasound-measured swelling strain data. The results show that the new method can be used to provide more accurate estimation on the uniaxial modulus than the inhomogeneous triphasic model with three parameters and the homogeneous mode, and predict effectively the swell- ing strains of highly nonuniform distribution of degenerated articular cartilages. This study can provide supplementary information for exploring mechanical and material properties of the cartilage, and thus be helpful for the diagnosis of osteoarthritis-related diseases.展开更多
The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical ...The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical Pacific. Freshwater flux (FWF) is another the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (QB) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Qs variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nifia and enhancing warming during E1 Nifio, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.展开更多
This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described...This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16展开更多
Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penet...Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.展开更多
To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against t...To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against the background of an international commercial communication satellite (INTELSAT-Ⅲ) module. Three improvements are developed, including multi-population search based on pyramid model, adaptive collision avoidance among particles, and mutation of degraded particles. In the numerical examples of the layout design of this simplified satellite module, the performance of PPSO is compared to global version PSO and local version PSO (ring and Neumann PSO). The results show that PPSO has higher computational accuracy, efficiency and success ratio.展开更多
Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.T...Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.展开更多
The reverse osmosis process has been applied in large industrial fields (water treatment, food industry, biotechnology, and ect.). Despite, this progress more investigation are required to optimize the reverse osmos...The reverse osmosis process has been applied in large industrial fields (water treatment, food industry, biotechnology, and ect.). Despite, this progress more investigation are required to optimize the reverse osmosis process. The present paper deals the modeling of mass transfer in a cavity limited by a semi-permeable membrane. Mass conservation and momentum balances are developed, dimensionless and control volume method has been applied. The velocity and concentration profiles versus the Reynolds number and Sherwood are studied. The results show that the permeability of the membrane decreases as function of the transversal (radial) component of the velocity. The axial (tangential) component of the velocity presents a good stability along the thickness of the cavity; this phenomenon can be attributed to the zero gradient of the tangential velocity. These preliminary results show that the phenomenon of the concentration polarization affects the mass transfer coefficient in a channel. Current study has considered the cavity without a promoter of the turbulence; whereas, the design of the spacer has an important role on mass transfer coefficient in the reverse osmosis module. Our next interest is the integration of the spacer in the cavity, and the study of the effect of its design on the concentration and velocity profiles and the mass transfer coefficient through the reverse osmosis membrane.展开更多
Shortage of appropriate donor grafts is the foremost current problem in organ transplantation. As a logical consequence, waiting times have extended and pretransplant mortality rates were significantly increasing. The...Shortage of appropriate donor grafts is the foremost current problem in organ transplantation. As a logical consequence, waiting times have extended and pretransplant mortality rates were significantly increasing. The implementation of a priority-based liver allocation system using the model of end-stage liverdisease(MELD) score helped to reduce waiting list mortality in liver transplantation(LT). However, due to an escalating organ scarcity, pre-LT MELD scores have significantly increased and liver recipients became more complex in recent years. This has finally led to posttransplant decreasing survival rates, attributed mainly to elevated rates of infectious and immunologic complications. To meet this challenging development, an increasing number of extended criteria donor grafts are currently accepted, which may, however, aggravate the patients' infectious and immunologic risk profiles. The administration of intravenous immunoglobulins(IVIg) is an established treatment in patients with immune deficiencies and other antibody-mediated diseases. In addition, IVIg was shown to be useful in treatment of several disorders caused by deterioration of the cellular immune system. It proved to be effective in preventing hyperacute rejection in highly sensitized kidney and heart transplants. In the liver transplant setting, the administration of specific Ig against hepatitis B virus is current standard in post-LT antiviral prophylaxis. The mechanisms of action of IVIg are complex and not fully understood. However, there is increasing experimental and clinical evidence that IVIg has an immuno-balancing impact by a combination of immuno-supporting and immuno-suppressive properties. It may be suggested that, especially in the context of a worsening organ shortage with all resulting clinical implications, liver transplant patients should benefit from immuno-regulatory capabilities of IVIg. In this review, perspectives of immune modulation by IVIg and impact on outcome in liver transplant patients are described.展开更多
By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulati...By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulation (UDFSPWM) respectively, the performances of the two modulation strategies are analyzed in detail. The circuit parameters, used in this paper, are fixed. When the systems, modulated by BSPWM and UDFSPWM, have the same switching frequency, the stabil- ity boundaries of the two systems are the same. However, when the equivalent switching frequencies of the two systems are the same, the BSPWM modulated system is more stable than the UDFSPWM modulated system. In addition, a convenient method of establishing the discrete-time model of piecewise smooth system is presented. Finally, the analytical results are confirmed by circuit simulations and experimental measurements.展开更多
We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal p...We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal parameters and the transient junction temperature of the LDM are modeled and obtained according to the temperature of the thermistor integrated in the module.Our improved thermal model is verified indirectly by monitoring the emission wavelength of the laser diode against gas absorption lines,and several thermal parameters are obtained with the temperature uncertainty of 0.01 K in the thermal dynamic process.展开更多
The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication ...The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels.展开更多
The paper mainly focuses on the digital pulse width modulation (DPWM) control techniques for high performance power electronic circuit design. The problem to be solved in this study addresses the DPWM converter design...The paper mainly focuses on the digital pulse width modulation (DPWM) control techniques for high performance power electronic circuit design. The problem to be solved in this study addresses the DPWM converter design for DC to DC conversion process. The control techniques have been utilized the Fuzzy Logic Rules Base method for proposed SIMULINK model of high performance power electronic circuit. The analytical calculations for real circuit design have been completed based on the mathematical modeling of the system. The results from the developed SIMULINK model confirm the target specifications of the high performance condition for power electronic circuit which was met the objective of this study. The numerical results have been carried out with the help of MATLAB/SIMULINK.展开更多
MEMS swallowable capsule is a novel technology in the non-invasive surgery. This technology provides a way to diagnose directly into the deep intestinal where the traditional invasive technology implemented, such as X...MEMS swallowable capsule is a novel technology in the non-invasive surgery. This technology provides a way to diagnose directly into the deep intestinal where the traditional invasive technology implemented, such as X-Ray, endoscopy. It is a key for us to locate and track the position of a MEMS capsule in clinical applications. To solve this problem, we implemented a magnetic sensor module based on the scalar form of the magnetic dipole model,which was designed with very small size (5.2 * 2. 1 * 1.2 em) and easy to assemble to satisfy the system requirement. Here we discuss in detail the principle of magnetic dipole model, rules of selecting sensor and functions of the module. Some trials are established to test the characteristic of the module. The results of the Cm experiment demonstrates that the module follows the rules of the new magnetic dipole model form.展开更多
Solar Photovoltaic is a very promising solution that can greatly contribute in solving the increasing global energy demand. In both rural and urban areas, photovoltaic modules are in some instances installed close to ...Solar Photovoltaic is a very promising solution that can greatly contribute in solving the increasing global energy demand. In both rural and urban areas, photovoltaic modules are in some instances installed close to telecommunication antennas or voltage transformers which generate important magnetic fields in their vicinity. The question is whether or not these magnetic fields affect the performances of the photovoltaic installations. This article presents a modelling study of external magnetic field effect on the electrical parameters of a photovoltaic module. The photocurrent, the photovoltage, the electric power, the series and the shunt resistances of the photovoltaic module, made up of ideal cells, are deduced from those of a silicon solar cell. Then, the I-V and P-V curves are plotted and the theoretical values of the electrical parameters of the photovoltaic module are deduced. The series and shunt resistances of the photovoltaic module are calculated using well known equations and the previous electrical parameters. The results show the negative effect of magnetic field on the performance of a solar photovoltaic module.展开更多
基金jointly supported by projects of the National Natural Science Foundation of China [grant numbers 42141017 and 41975112]。
文摘El Niño-Southern Oscillation(ENSO)is a major driver of climate change in middle and low latitudes and thus strongly influences the terrestrial carbon cycle through land-air interaction.Both the ENSO modulation and carbon flux variability are projected to increase in the future,but their connection still needs further investigation.To investigate the impact of future ENSO modulation on carbon flux variability,this study used 10 CMIP6 earth system models to analyze ENSO modulation and carbon flux variability in middle and low latitudes,and their relationship,under different scenarios simulated by CMIP6 models.The results show a high consistency in the simulations,with both ENSO modulation and carbon flux variability showing an increasing trend in the future.The higher the emissions scenario,especially SSP5-8.5 compared to SSP2-4.5,the greater the increase in variability.Carbon flux variability in the middle and low latitudes under SSP2-4.5 increases by 30.9%compared to historical levels during 1951-2000,while under SSP5-8.5 it increases by 58.2%.Further analysis suggests that ENSO influences mid-and low-latitude carbon flux variability primarily through temperature.This occurrence may potentially be attributed to the increased responsiveness of gross primary productivity towards regional temperature fluctuations,combined with the intensified influence of ENSO on land surface temperatures.
文摘Small signal equivalent circuit model and modulation properties of vertical cavity surface emitting lasers(VCSEL's) are presented.The modulation properties both in analytic equation calculation and in circuit model simulation are studied.The analytic equation calculation of the modulation properties is calculated by using Mathcad program and the circuit model simulation is simulated by using Pspice program respectively.The results of calculation and the simulation are in good agreement with each other.Experiment is performed to testify the circuit model.
文摘Based on the features extracted from generalized autoregressive (GAR) model parameters of the received waveform, and the use of multilayer perceptron(MLP) neural network classifier, a new digital modulation recognition method is proposed in this paper. Because of the better noise suppression ability of the GAR model and the powerful pattern classification capacity of the MLP neural network classifier, the new method can significantly improve the recognition performance in lower SNR with better robustness. To assess the performance of the new method, computer simulations are also performed.
基金supported in part by the National Natural Science Foundation of China under Grant 52077142the Research Foundation of Zhengzhou Electric Power College under Grant ZEPCKY2024-01 and ZEPCKYRC01。
文摘In this paper,a magnetic field modulation model considering the influence of phase angles is established for the analysis and weakening of the cogging torque of the permanent magnet synchronous wind generations.Compared with the existing analytical model,the modulation effect of the magnetic field harmonics and phase angle on the cogging torque components is analyzed in the new model.Firstly,flux density model with phase angle characteristics is derived,and the relationship of the cogging torque and magnetic field harmonic is analyzed using energy method.Then,based on the magnetic modulation mechanism,the impact of the phase angle and magnetic field harmonics on the coupling relationship among cogging torque components is analyzed.All cogging torque components are classified as a combination of multiple positive and negative harmonic components,and the contribution characteristics of the components are determined by the harmonic combination and phase angle characteristics.Based on the finite element model(FEM),the magnetic field modulation model of the cogging torque is proved.On the basis of the conclusions obtained,it is further explained that the suppression mechanism of rotor-step skewing is a mutual complementary effect of the positive components and negative cogging components,and the main harmonic is effectively offset by selecting the seasonable of segment number and skewed angle of rotor.Finally,in order to verify the validity of the analysis method,the no-load line back EMF and cogging torque of optimized prototype is tested,and the experimental results agree well with the FEM results.
基金Supported by the National Natural Science Foundation of China (No.60436030)
文摘The state space average model and the large signal models of Pulse Skip Modulation (PSM) mode are given in this paper. Farther more, based on these models and simulations of PSM converter circuits, the analysis of the characteristics of PSM converter is described in this paper, of which include efficiency, frequency spectrum analysis, output voltage ripple, response speed and interference rejection capability. Compared with PWM control mode, PSM converter has high efficiency, especially with fight loads, quick response, good interference rejection and good EMC characteristic. Improved PSM slightly, it could be a kind of good independent regulating mode during the whole operating process for a DC-DC converter. Finally, some experimental results are also presented in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant No.51176044)
文摘he paper focuses on the turbulence modulation problem in gas–particle flow with the use of probability density function(PDF) approach. By means of the PDF method, a general statistical moment turbulence modulation model without considering the trajectory difference between two phases is derived from the Navier–Stokes equations. A new turbulence production term induced by the dispersed-phase is analyzed and considered. Furthermore, the trajectory difference between two media is taken into account. Subsequently, a new k–ε turbulence modulation model in dilute particle-laden flow is successfully set up. Then, the changes to several terms, including the turbulence production, dissipation, and diffusion terms, are well described consequently. The promoted model provides a more probable explanation for the modification of particles on the turbulence. Finally, we applied the model to simulate a gas–particle turbulence flow case in a wall jet, and found that the simulation results agree well with the experimental data.
基金supported by the National Natural Science Foundation of China(10772018,30872720)
文摘It is well known that subtle changes in structure and tissue composition of articular cartilage can lead to its degeneration. The present paper puts forward a modified layered inhomogeneous triphasic model with four parameters based on the inhomogeneous triphasic model proposed by Narmoneva et al. Incorporating a piecewise fitting optimization criterion, the new model was used to obtain the uniaxial modulus Ha, and predict swelling pattern for the articular cartilage based on ultrasound-measured swelling strain data. The results show that the new method can be used to provide more accurate estimation on the uniaxial modulus than the inhomogeneous triphasic model with three parameters and the homogeneous mode, and predict effectively the swell- ing strains of highly nonuniform distribution of degenerated articular cartilages. This study can provide supplementary information for exploring mechanical and material properties of the cartilage, and thus be helpful for the diagnosis of osteoarthritis-related diseases.
基金supported in part by NSF Grant(ATM-0727668and AGS-1061998)NOAA Grant(NA08OAR4310885)+3 种基金NASA Grants(NNX08AI74G,NNX08AI76G,and NNX09AF41G)F.Zheng is supported by the National Basic Research Program of China(GrantNos.2012CB417404and2012CB955202)the Natural Science Foundation of China(Grant No.41075064)Pei is additionally supported by China Scholarship Coun-cil(CSC) with the Ocean University of China,Qingdao,China
文摘The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical Pacific. Freshwater flux (FWF) is another the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (QB) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Qs variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nifia and enhancing warming during E1 Nifio, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.
文摘This paper presents the construction of an active suspension control of a one-wheel car model using fuzzy reasoning and a disturbance observer. The one-wheel car model to be treated here can be approximately described as a nonlinear two degrees of freedom system subject to excitation from a road profile. The active control is designed as the fuzzy control inferred by using single input rule modules fuzzy reasoning, and the active control force is released by actuating a pneumatic actuator. The excitation from the road profile is estimated by using a disturbance observer, and the estimate is denoted as one of the variables in the precondition part of the fuzzy control rules. A compensator is inserted to counter the performance degradation due to the delay of the pneumatic actuator. The experimental result indicates that the proposed active suspension system improves much the vibration suppression of the car model. Key words One-wheel car model - Active suspension system - Single input rule modules fuzzy reasoning - Pneumatic actuator - Disturbance observer Document code A CLC number TH16
基金Supported by the Hi-Tech. Research and Development Program of China (863) (2002AA649280, 2002AA304030), National Natural Science Foundation of China (No. 20206002), Beijing NOVA program (H013610250112), University Postdoctrate Research Foundation of Chin
文摘Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.
基金This project is supported by National Natural Science Foundation of China (No.50275019, No.50335040, No.50575031).
文摘To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against the background of an international commercial communication satellite (INTELSAT-Ⅲ) module. Three improvements are developed, including multi-population search based on pyramid model, adaptive collision avoidance among particles, and mutation of degraded particles. In the numerical examples of the layout design of this simplified satellite module, the performance of PPSO is compared to global version PSO and local version PSO (ring and Neumann PSO). The results show that PPSO has higher computational accuracy, efficiency and success ratio.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(RGP.2/111/43).
文摘Vector control schemes have recently been used to drive linear induction motors(LIM)in high-performance applications.This trend promotes the development of precise and efficient control schemes for individual motors.This research aims to present a novel framework for speed and thrust force control of LIM using space vector pulse width modulation(SVPWM)inverters.The framework under consideration is developed in four stages.To begin,MATLAB Simulink was used to develop a detailed mathematical and electromechanical dynamicmodel.The research presents a modified SVPWM inverter control scheme.By tuning the proportional-integral(PI)controller with a transfer function,optimized values for the PI controller are derived.All the subsystems mentioned above are integrated to create a robust simulation of the LIM’s precise speed and thrust force control scheme.The reference speed values were chosen to evaluate the performance of the respective system,and the developed system’s response was verified using various data sets.For the low-speed range,a reference value of 10m/s is used,while a reference value of 100 m/s is used for the high-speed range.The speed output response indicates that themotor reached reference speed in amatter of seconds,as the delay time is between 8 and 10 s.The maximum amplitude of thrust achieved is less than 400N,demonstrating the controller’s capability to control a high-speed LIM with minimal thrust ripple.Due to the controlled speed range,the developed system is highly recommended for low-speed and high-speed and heavy-duty traction applications.
文摘The reverse osmosis process has been applied in large industrial fields (water treatment, food industry, biotechnology, and ect.). Despite, this progress more investigation are required to optimize the reverse osmosis process. The present paper deals the modeling of mass transfer in a cavity limited by a semi-permeable membrane. Mass conservation and momentum balances are developed, dimensionless and control volume method has been applied. The velocity and concentration profiles versus the Reynolds number and Sherwood are studied. The results show that the permeability of the membrane decreases as function of the transversal (radial) component of the velocity. The axial (tangential) component of the velocity presents a good stability along the thickness of the cavity; this phenomenon can be attributed to the zero gradient of the tangential velocity. These preliminary results show that the phenomenon of the concentration polarization affects the mass transfer coefficient in a channel. Current study has considered the cavity without a promoter of the turbulence; whereas, the design of the spacer has an important role on mass transfer coefficient in the reverse osmosis module. Our next interest is the integration of the spacer in the cavity, and the study of the effect of its design on the concentration and velocity profiles and the mass transfer coefficient through the reverse osmosis membrane.
文摘Shortage of appropriate donor grafts is the foremost current problem in organ transplantation. As a logical consequence, waiting times have extended and pretransplant mortality rates were significantly increasing. The implementation of a priority-based liver allocation system using the model of end-stage liverdisease(MELD) score helped to reduce waiting list mortality in liver transplantation(LT). However, due to an escalating organ scarcity, pre-LT MELD scores have significantly increased and liver recipients became more complex in recent years. This has finally led to posttransplant decreasing survival rates, attributed mainly to elevated rates of infectious and immunologic complications. To meet this challenging development, an increasing number of extended criteria donor grafts are currently accepted, which may, however, aggravate the patients' infectious and immunologic risk profiles. The administration of intravenous immunoglobulins(IVIg) is an established treatment in patients with immune deficiencies and other antibody-mediated diseases. In addition, IVIg was shown to be useful in treatment of several disorders caused by deterioration of the cellular immune system. It proved to be effective in preventing hyperacute rejection in highly sensitized kidney and heart transplants. In the liver transplant setting, the administration of specific Ig against hepatitis B virus is current standard in post-LT antiviral prophylaxis. The mechanisms of action of IVIg are complex and not fully understood. However, there is increasing experimental and clinical evidence that IVIg has an immuno-balancing impact by a combination of immuno-supporting and immuno-suppressive properties. It may be suggested that, especially in the context of a worsening organ shortage with all resulting clinical implications, liver transplant patients should benefit from immuno-regulatory capabilities of IVIg. In this review, perspectives of immune modulation by IVIg and impact on outcome in liver transplant patients are described.
基金supported by the National Natural Science Foundation of China (Grant No. 51277146)the Foundation of Delta Science,Technologythe Education Development Program for Power Electronics (Grant No. DREG2011003)
文摘By deriving the discrete-time models of a digitally controlled H-bridge inverter system modulated by bipolar sinu- soidal pulse width modulation (BSPWM) and unipolar double-frequency sinusoidal pulse width modulation (UDFSPWM) respectively, the performances of the two modulation strategies are analyzed in detail. The circuit parameters, used in this paper, are fixed. When the systems, modulated by BSPWM and UDFSPWM, have the same switching frequency, the stabil- ity boundaries of the two systems are the same. However, when the equivalent switching frequencies of the two systems are the same, the BSPWM modulated system is more stable than the UDFSPWM modulated system. In addition, a convenient method of establishing the discrete-time model of piecewise smooth system is presented. Finally, the analytical results are confirmed by circuit simulations and experimental measurements.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 60938002)the Special-funded Program on National Key Scientific Instruments and Equipment Development of China (Grant No. 2012YQ06016501)the Tianjin Research Program of Application Foundation and Advanced Technology,China (Grant No. 11JCYBJC04900)
文摘We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal parameters and the transient junction temperature of the LDM are modeled and obtained according to the temperature of the thermistor integrated in the module.Our improved thermal model is verified indirectly by monitoring the emission wavelength of the laser diode against gas absorption lines,and several thermal parameters are obtained with the temperature uncertainty of 0.01 K in the thermal dynamic process.
基金the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding After Publication,Grant No.(44-PRFA-P-131).
文摘The efficient transmission of images,which plays a large role inwireless communication systems,poses a significant challenge in the growth of multimedia technology.High-quality images require well-tuned communication standards.The Single Carrier Frequency Division Multiple Access(SC-FDMA)is adopted for broadband wireless communications,because of its low sensitivity to carrier frequency offsets and low Peak-to-Average Power Ratio(PAPR).Data transmission through open-channel networks requires much concentration on security,reliability,and integrity.The data need a space away fromunauthorized access,modification,or deletion.These requirements are to be fulfilled by digital image watermarking and encryption.This paper ismainly concerned with secure image communication over the wireless SC-FDMA systemas an adopted communication standard.It introduces a robust image communication framework over SC-FDMA that comprises digital image watermarking and encryption to improve image security,while maintaining a high-quality reconstruction of images at the receiver side.The proposed framework allows image watermarking based on the Discrete Cosine Transform(DCT)merged with the Singular Value Decomposition(SVD)in the so-called DCT-SVD watermarking.In addition,image encryption is implemented based on chaos and DNA encoding.The encrypted watermarked images are then transmitted through the wireless SC-FDMA system.The linearMinimumMean Square Error(MMSE)equalizer is investigated in this paper to mitigate the effect of channel fading and noise on the transmitted images.Two subcarrier mapping schemes,namely localized and interleaved schemes,are compared in this paper.The study depends on different channelmodels,namely PedestrianAandVehicularA,with a modulation technique namedQuadratureAmplitude Modulation(QAM).Extensive simulation experiments are conducted and introduced in this paper for efficient transmission of encrypted watermarked images.In addition,different variants of SC-FDMA based on the Discrete Wavelet Transform(DWT),Discrete Cosine Transform(DCT),and Fast Fourier Transform(FFT)are considered and compared for the image communication task.The simulation results and comparison demonstrate clearly that DWT-SC-FDMAis better suited to the transmission of the digital images in the case of PedestrianAchannels,while the DCT-SC-FDMA is better suited to the transmission of the digital images in the case of Vehicular A channels.
文摘The paper mainly focuses on the digital pulse width modulation (DPWM) control techniques for high performance power electronic circuit design. The problem to be solved in this study addresses the DPWM converter design for DC to DC conversion process. The control techniques have been utilized the Fuzzy Logic Rules Base method for proposed SIMULINK model of high performance power electronic circuit. The analytical calculations for real circuit design have been completed based on the mathematical modeling of the system. The results from the developed SIMULINK model confirm the target specifications of the high performance condition for power electronic circuit which was met the objective of this study. The numerical results have been carried out with the help of MATLAB/SIMULINK.
文摘MEMS swallowable capsule is a novel technology in the non-invasive surgery. This technology provides a way to diagnose directly into the deep intestinal where the traditional invasive technology implemented, such as X-Ray, endoscopy. It is a key for us to locate and track the position of a MEMS capsule in clinical applications. To solve this problem, we implemented a magnetic sensor module based on the scalar form of the magnetic dipole model,which was designed with very small size (5.2 * 2. 1 * 1.2 em) and easy to assemble to satisfy the system requirement. Here we discuss in detail the principle of magnetic dipole model, rules of selecting sensor and functions of the module. Some trials are established to test the characteristic of the module. The results of the Cm experiment demonstrates that the module follows the rules of the new magnetic dipole model form.
文摘Solar Photovoltaic is a very promising solution that can greatly contribute in solving the increasing global energy demand. In both rural and urban areas, photovoltaic modules are in some instances installed close to telecommunication antennas or voltage transformers which generate important magnetic fields in their vicinity. The question is whether or not these magnetic fields affect the performances of the photovoltaic installations. This article presents a modelling study of external magnetic field effect on the electrical parameters of a photovoltaic module. The photocurrent, the photovoltage, the electric power, the series and the shunt resistances of the photovoltaic module, made up of ideal cells, are deduced from those of a silicon solar cell. Then, the I-V and P-V curves are plotted and the theoretical values of the electrical parameters of the photovoltaic module are deduced. The series and shunt resistances of the photovoltaic module are calculated using well known equations and the previous electrical parameters. The results show the negative effect of magnetic field on the performance of a solar photovoltaic module.