Exotic plant invasion presents a serious threat to native ecosystem structure and function. Little is known about the role of soil microbial communities in facilitating or resisting the spread of invasive plants into ...Exotic plant invasion presents a serious threat to native ecosystem structure and function. Little is known about the role of soil microbial communities in facilitating or resisting the spread of invasive plants into native communities. The purpose of this research is to understand how the invasive annual plant Ambrosia artemisiifolia L. facilitates its competition capacity through changing the structure and function of soil microbial communities. The soil characteristics of different areas invaded by A. artemisiifolia were examined. Greenhouse experiments were designed to assess the effect of A. artemisiifolia invasion-induced changes of soil biota on co-occurring plant growth, and on the interactions between A. artemisiifolia and three co-occurring plant species. The results showed that the soil organic C content was the highest in heavily invaded sites, the lowest in native plant sites, and intermediate in newly invaded sites. Soil available N, P and K concentrations in heavily invaded site were 2.4, 1.9 and 1.7 times higher than those in native plant soil, respectively. Soil pH decreased as A. artemisiifolia invasion intensity increased, and was lower in invaded sites(heavily invaded and newly invaded) than in native plant sites. The soil microbial community structure was clearly separated in the three types of sites, and A. artemisiifolia invasion increased anaerobe, sulfate-reducing bacteria and actinomycete abundance. Soil biota of invaded sites inhibits growth of co-occurring plants(Galinsoga parvifloraCav., Medicago sativa L. and Setaria plicata(Lam.) T. Cooke.) compared to soil biota from un-invaded sites, but facilitates A. artemisiifolia growth and competition with co-occurring plants. A. artemisiifolia biomass was 50-130% greater when competing with three co-occurring plants, compared to single-species competition only(invasion by A. artemisiifolia alone), in heavily invaded soil. Results of the present study indicated that A. artemisiifolia invasion alters the soil microbial community in a way that favors itself while inhibiting native plant species, with measurable effects on performance of co-occurring plants.展开更多
The airborne ragweed pollen spectrum was investigated in the air of Ankara, Turkey for aperiod of ten years (1990-1999) using a Burkard seven-day volumetric recording trap. In our study period,long distance transporte...The airborne ragweed pollen spectrum was investigated in the air of Ankara, Turkey for aperiod of ten years (1990-1999) using a Burkard seven-day volumetric recording trap. In our study period,long distance transported Ambrosia pollen has been registered. Daily pollen levels varied from low to highin Burge抯 system. In last three years, the pollen concentration of Ambrosia showed a clear increasingtendency. Our results prove that ragweed pollen may be an important threat for ragweed sensitive patientsin Ankara city in near future.展开更多
Euplatypus segnis is an insect pest of economic importance in pecan (Carya illinoensis) trees grown at Parras, General Cepeda and Torreón Coahuila, Mexico. The objectives in this study-were to identify the fungal...Euplatypus segnis is an insect pest of economic importance in pecan (Carya illinoensis) trees grown at Parras, General Cepeda and Torreón Coahuila, Mexico. The objectives in this study-were to identify the fungal strains associated to ambrosia borer body and diseased pecan wood and determine their pathogenicity. The results showed that the associated fungi to Euplatypus segnis and damaging the pecan wood were identified as: Helminthosporium sp., Aspergillus sp., Penicillium sp., Phoma sp., Ascochyta sp., Phaecylomices sp., Umbeliopsis sp., Torula sp., Fusarium solani, Alternaria alternata, Fusarum oxysporum, and Lasiodiplodia theobromae. The pathogenicity tests on healthy 3 year old pecan trees cv. western using Fusarium oxysporum, Fusarium solani, Alternaria alternata and Lasiodiplodia theobromae suspension conidia shown die back tree branches after 84 days inoculation. The insect in combination with the fungal invasion eventually cause the death of trees. Additionally, the insect contributes to the spread of fungi in pecan nut orchards.展开更多
During three years lasting studies on the territory of the city of Novi Sad, terrain studies of Ambrosia artemisiifolia L. distribution as well as mapping were performed on regulated and disordered green areas and on ...During three years lasting studies on the territory of the city of Novi Sad, terrain studies of Ambrosia artemisiifolia L. distribution as well as mapping were performed on regulated and disordered green areas and on arable areas. For mapping of ragweed distribution, partially modified method of Braun-Blanquet was used, and data processing was perfomed by specially designed program Ambrosia Spot Marker. Monitoring of this species was also done because of the occurrence of retrovegetation after mowing. During vegetation period, this allergenic weed species was controlled by multiple mowing, and rough ruderal sites outside settlements were treated by glyphosate at a rate of 1.2 kg ha^-1 -2.4 kg ha^-1. The study comprehended also monitoring of pollen concentrations in the air by Rotorod pollen sampler spore collector. A. artemisiifolia L. was established in 21 city zones on over 200 localities, on the banks of the river Danube, in Petrovaradin and Sremski Karlovci. Recommended mechanical measures such as mowing, drilling in the phase of germination, and chemical control measures, resulted in significant reduction ofA. artemisiifolia L. In the second half of the August 2009 the highest number of pollen grains was found in the amount of 783 pollen grains per m3 of air.展开更多
Laurel wilt is a destructive vascular disease responsible for high mortality of American tree species in the family Lauraceae, particularly redbay (Persea borbonia) and swampbay (P. palustris), two dominant components...Laurel wilt is a destructive vascular disease responsible for high mortality of American tree species in the family Lauraceae, particularly redbay (Persea borbonia) and swampbay (P. palustris), two dominant components of Coastal Plain forest communities in the southeastern United States. The disease syndrome emerged as a result of establishment of an exotic wood-boring beetle, Xyleborus glabratus, now known as the redbay ambrosia beetle. During gallery excavation, females of X. glabratus introduce a newly-described, obligatory fungal symbiont, Raffaelea lauricola. This fungus proliferates within the gallery and provides food for the beetles, but it has proven to be pathogenic to American lauraceous hosts, which have had no co-evolved history with R. lauricola. Presence of the foreign fungus elicits secretion of resins and formation of extensive parenchymal tyloses within xylem vessels. The extreme defensive response results in blockage of water transport, systemic wilt, and ultimately tree death. The beetle vector was first detected near Savannah, Georgia in 2002, and since has spread throughout the Southeast to become established in six states. The epidemic spread south through Florida more rapidly than predicted and currently threatens commercial production of avocado (Persea americana). Recent research indicates that California bay laurel (Umbellularia californica) can serve as a reproductive host for X. glabratus and is susceptible to laurel wilt disease. Thus, the US Pacific coastal forest ecosystems (and the California avocado industry) would be negatively impacted should the vector become established along the western coast. This review article summarizes our current understanding of the insect vector, the mycopathogen, and the susceptible host tree species. It also addresses elements of disease management and limitations with our current detection methods for redbay ambrosia beetle, which rely on manuka oil lures. Of the host-based attractants evaluated, cubeb oil shows the most promise as a potential new lure for X. glabratus.展开更多
Ambrosia artemisiifolia L. (common ragweed) is an annual ruderal plant that is native to Northern America but nowadays is also spreading across Europe, and its pollen is known to be highly allergenic. Air pollution, e...Ambrosia artemisiifolia L. (common ragweed) is an annual ruderal plant that is native to Northern America but nowadays is also spreading across Europe, and its pollen is known to be highly allergenic. Air pollution, e.g. NOx and climate change may affect the plant growth, pollen production and duration of the entire pollen season. In this study, ragweed plants were grown over an entire vegetation period under 40 ppb NO2/clean air (control) and 80 ppb NO2 (treatment). The inflorescence length was not affected by this air pollutant. However, the pollen amount increased, while the seed production decreased in both populations upon elevated NO2 concentrations. Regarding phenolic metabolites elevated NO2 had no effect on the amount of total phenolic metabolites, while individual metabolites showed significant changes.展开更多
Objective:Weed pollens are common sources of allergens worldwide.The prevalence of weed pollen sensitization is not yet fully known in China.The purpose of this study was to investigate the prevalence of sensitization...Objective:Weed pollens are common sources of allergens worldwide.The prevalence of weed pollen sensitization is not yet fully known in China.The purpose of this study was to investigate the prevalence of sensitization to weed allergens from Artemisia,Ambrosia,and Humulus in northern China.Methods:A total of 1144 subjects(aged from 5 to 68 years) visiting our clinic from June to October 2011 underwent intradermal testing using a panel of 25 allergen sources.Subjects with positive skin responses to any pollen were further tested for their serum concentrations of IgE antibodies against Artemisia vulgaris,Ambrosia artemisiifolia,and Humulus scandens,and against the purified allergens,Art v 1 and Amb a 1.Results:Of 1144 subjects,170 had positive intradermal reactions to pollen and 144 donated serum for IgE testing.The prevalence of positive intradermal responses to pollens of Artemisia sieversiana,Artemisia annua,A.artemisiifolia,and H.scandens was 11.0%,10.2%,3.7%,and 6.6%,respectively.Among the intradermal positive subjects,the prevalence of specific IgE antigens to A.vulgaris was 58.3%,to A.artemisiifolia 14.7%,and to H.scandens 41.0%.The prevalence of specific IgE antigens to the allergen Art v 1 was 46.9%,and to Amb a 1 was 11.2%.The correlation between the presence of IgE antibodies specific to A.vulgaris and to the Art v 1 antigen was very high.Subjects with A.artemisiifolia specific IgE also had A.vulgaris specific IgE,but with relatively high levels of A.vulgaris IgE antibodies.There were no correlations between the presence of IgE antibodies to H.scandens and A.vulgaris or to H.scandens and A.artemisiifolia.Conclusions:The intradermal prevalence of weed pollen sensitization among allergic subjects in northern China is about 13.5%.Correlations of specific IgE antibodies suggest that pollen allergens from Artemisia and Humulus are independent sources for primary sensitization.展开更多
Aims Flowering time has been suggested to be an important adaptive trait during the dispersal of invasive species,and identifying the molecu-lar mechanisms underlying flowering time may provide insight into the local ...Aims Flowering time has been suggested to be an important adaptive trait during the dispersal of invasive species,and identifying the molecu-lar mechanisms underlying flowering time may provide insight into the local adaptation during the process of invasion.Here,we con-ducted a preliminary exploration on the genetic basis of the differ-entiation of flowering time in Ambrosia artemisiifolia.Methods using relative real-time fluorescent quantitative polymerase chain reaction,we investigated the expression levels of eight flowering-related genes,including AP1,FT,SOC1,CRY2,FKF1,GI,CO2 and SPY,in leaves and flowers at different time points in individuals from northern beijing and southern Wuhan populations that exhibit significant differences in flowering times to identify any rhythmic changes in gene expression and their association with differential flowering times.Important Findings The differentiation of flowering time in the A.artemisiifolia popula-tions was closely associated with five genes involved in flowering pathways.The floral pathway integrators FT and SOC1 and floral meristem identity gene AP1 exhibited increased expression during flowering.The photoreceptor CRY2 in the light-dependent path-way and the SPY gene in the gibberellin pathway displayed specific expression patterns over time.in earlier-flowering beijing plants,CRY2 expression was lower and SPY expression was higher than in Wuhan plants.The expression patterns of these five genes sug-gest a molecular basis for the differentiation of flowering time in A.artemisiifolia.展开更多
Arbuscular mycorrhizal fungi(AMF)can increase host plant nutrient uptake via their mycelium,thus promoting plant growth.AMF have always been associated with successful invasion of most exotic plant species.However,kno...Arbuscular mycorrhizal fungi(AMF)can increase host plant nutrient uptake via their mycelium,thus promoting plant growth.AMF have always been associated with successful invasion of most exotic plant species.However,knowledge regarding how AMF affect the success of plant invasion remains limited.Exotic Ambrosia artemisiifolia is an invasive and mycorrhizal plant species.A long-term field experiment was conducted to examine the differences in AMF diversity and composition in the roots of A.artemisiifolia and Setaria viridis subjected to interspecific competition during growth.A greenhouse experiment was also performed to test the effect of Funneliformis mosseae on the growth of these two species.Ambrosia artemisiifolia invasion caused AMF diversity to change in native S.viridis roots.Meanwhile,the relative abundance of F.mosseae was significantly higher in the roots of A.artemisiifolia than in those of S.viridis.The higher AMF colonization rate in the exotic species(A.artemisiifolia)than in the native species(S.viridis)was found in both the field and greenhouse experiments.The greenhouse experiment possibly provided that AMF advantaged to the growth of A.artemisiifolia,by influencing its photosynthetic capacity as well as its phosphorus and potassium absorption.These observations highlight the important relationship of AMF with the successful invasion of A.artemisiifolia.展开更多
基金supported by the National Basic Research Program of China(2009CB119200)the National Natural Science Foundation of China(30871654)
文摘Exotic plant invasion presents a serious threat to native ecosystem structure and function. Little is known about the role of soil microbial communities in facilitating or resisting the spread of invasive plants into native communities. The purpose of this research is to understand how the invasive annual plant Ambrosia artemisiifolia L. facilitates its competition capacity through changing the structure and function of soil microbial communities. The soil characteristics of different areas invaded by A. artemisiifolia were examined. Greenhouse experiments were designed to assess the effect of A. artemisiifolia invasion-induced changes of soil biota on co-occurring plant growth, and on the interactions between A. artemisiifolia and three co-occurring plant species. The results showed that the soil organic C content was the highest in heavily invaded sites, the lowest in native plant sites, and intermediate in newly invaded sites. Soil available N, P and K concentrations in heavily invaded site were 2.4, 1.9 and 1.7 times higher than those in native plant soil, respectively. Soil pH decreased as A. artemisiifolia invasion intensity increased, and was lower in invaded sites(heavily invaded and newly invaded) than in native plant sites. The soil microbial community structure was clearly separated in the three types of sites, and A. artemisiifolia invasion increased anaerobe, sulfate-reducing bacteria and actinomycete abundance. Soil biota of invaded sites inhibits growth of co-occurring plants(Galinsoga parvifloraCav., Medicago sativa L. and Setaria plicata(Lam.) T. Cooke.) compared to soil biota from un-invaded sites, but facilitates A. artemisiifolia growth and competition with co-occurring plants. A. artemisiifolia biomass was 50-130% greater when competing with three co-occurring plants, compared to single-species competition only(invasion by A. artemisiifolia alone), in heavily invaded soil. Results of the present study indicated that A. artemisiifolia invasion alters the soil microbial community in a way that favors itself while inhibiting native plant species, with measurable effects on performance of co-occurring plants.
基金Supported by the Research Foundation of Ankara University.
文摘The airborne ragweed pollen spectrum was investigated in the air of Ankara, Turkey for aperiod of ten years (1990-1999) using a Burkard seven-day volumetric recording trap. In our study period,long distance transported Ambrosia pollen has been registered. Daily pollen levels varied from low to highin Burge抯 system. In last three years, the pollen concentration of Ambrosia showed a clear increasingtendency. Our results prove that ragweed pollen may be an important threat for ragweed sensitive patientsin Ankara city in near future.
文摘Euplatypus segnis is an insect pest of economic importance in pecan (Carya illinoensis) trees grown at Parras, General Cepeda and Torreón Coahuila, Mexico. The objectives in this study-were to identify the fungal strains associated to ambrosia borer body and diseased pecan wood and determine their pathogenicity. The results showed that the associated fungi to Euplatypus segnis and damaging the pecan wood were identified as: Helminthosporium sp., Aspergillus sp., Penicillium sp., Phoma sp., Ascochyta sp., Phaecylomices sp., Umbeliopsis sp., Torula sp., Fusarium solani, Alternaria alternata, Fusarum oxysporum, and Lasiodiplodia theobromae. The pathogenicity tests on healthy 3 year old pecan trees cv. western using Fusarium oxysporum, Fusarium solani, Alternaria alternata and Lasiodiplodia theobromae suspension conidia shown die back tree branches after 84 days inoculation. The insect in combination with the fungal invasion eventually cause the death of trees. Additionally, the insect contributes to the spread of fungi in pecan nut orchards.
文摘During three years lasting studies on the territory of the city of Novi Sad, terrain studies of Ambrosia artemisiifolia L. distribution as well as mapping were performed on regulated and disordered green areas and on arable areas. For mapping of ragweed distribution, partially modified method of Braun-Blanquet was used, and data processing was perfomed by specially designed program Ambrosia Spot Marker. Monitoring of this species was also done because of the occurrence of retrovegetation after mowing. During vegetation period, this allergenic weed species was controlled by multiple mowing, and rough ruderal sites outside settlements were treated by glyphosate at a rate of 1.2 kg ha^-1 -2.4 kg ha^-1. The study comprehended also monitoring of pollen concentrations in the air by Rotorod pollen sampler spore collector. A. artemisiifolia L. was established in 21 city zones on over 200 localities, on the banks of the river Danube, in Petrovaradin and Sremski Karlovci. Recommended mechanical measures such as mowing, drilling in the phase of germination, and chemical control measures, resulted in significant reduction ofA. artemisiifolia L. In the second half of the August 2009 the highest number of pollen grains was found in the amount of 783 pollen grains per m3 of air.
文摘Laurel wilt is a destructive vascular disease responsible for high mortality of American tree species in the family Lauraceae, particularly redbay (Persea borbonia) and swampbay (P. palustris), two dominant components of Coastal Plain forest communities in the southeastern United States. The disease syndrome emerged as a result of establishment of an exotic wood-boring beetle, Xyleborus glabratus, now known as the redbay ambrosia beetle. During gallery excavation, females of X. glabratus introduce a newly-described, obligatory fungal symbiont, Raffaelea lauricola. This fungus proliferates within the gallery and provides food for the beetles, but it has proven to be pathogenic to American lauraceous hosts, which have had no co-evolved history with R. lauricola. Presence of the foreign fungus elicits secretion of resins and formation of extensive parenchymal tyloses within xylem vessels. The extreme defensive response results in blockage of water transport, systemic wilt, and ultimately tree death. The beetle vector was first detected near Savannah, Georgia in 2002, and since has spread throughout the Southeast to become established in six states. The epidemic spread south through Florida more rapidly than predicted and currently threatens commercial production of avocado (Persea americana). Recent research indicates that California bay laurel (Umbellularia californica) can serve as a reproductive host for X. glabratus and is susceptible to laurel wilt disease. Thus, the US Pacific coastal forest ecosystems (and the California avocado industry) would be negatively impacted should the vector become established along the western coast. This review article summarizes our current understanding of the insect vector, the mycopathogen, and the susceptible host tree species. It also addresses elements of disease management and limitations with our current detection methods for redbay ambrosia beetle, which rely on manuka oil lures. Of the host-based attractants evaluated, cubeb oil shows the most promise as a potential new lure for X. glabratus.
文摘Ambrosia artemisiifolia L. (common ragweed) is an annual ruderal plant that is native to Northern America but nowadays is also spreading across Europe, and its pollen is known to be highly allergenic. Air pollution, e.g. NOx and climate change may affect the plant growth, pollen production and duration of the entire pollen season. In this study, ragweed plants were grown over an entire vegetation period under 40 ppb NO2/clean air (control) and 80 ppb NO2 (treatment). The inflorescence length was not affected by this air pollutant. However, the pollen amount increased, while the seed production decreased in both populations upon elevated NO2 concentrations. Regarding phenolic metabolites elevated NO2 had no effect on the amount of total phenolic metabolites, while individual metabolites showed significant changes.
文摘Objective:Weed pollens are common sources of allergens worldwide.The prevalence of weed pollen sensitization is not yet fully known in China.The purpose of this study was to investigate the prevalence of sensitization to weed allergens from Artemisia,Ambrosia,and Humulus in northern China.Methods:A total of 1144 subjects(aged from 5 to 68 years) visiting our clinic from June to October 2011 underwent intradermal testing using a panel of 25 allergen sources.Subjects with positive skin responses to any pollen were further tested for their serum concentrations of IgE antibodies against Artemisia vulgaris,Ambrosia artemisiifolia,and Humulus scandens,and against the purified allergens,Art v 1 and Amb a 1.Results:Of 1144 subjects,170 had positive intradermal reactions to pollen and 144 donated serum for IgE testing.The prevalence of positive intradermal responses to pollens of Artemisia sieversiana,Artemisia annua,A.artemisiifolia,and H.scandens was 11.0%,10.2%,3.7%,and 6.6%,respectively.Among the intradermal positive subjects,the prevalence of specific IgE antigens to A.vulgaris was 58.3%,to A.artemisiifolia 14.7%,and to H.scandens 41.0%.The prevalence of specific IgE antigens to the allergen Art v 1 was 46.9%,and to Amb a 1 was 11.2%.The correlation between the presence of IgE antibodies specific to A.vulgaris and to the Art v 1 antigen was very high.Subjects with A.artemisiifolia specific IgE also had A.vulgaris specific IgE,but with relatively high levels of A.vulgaris IgE antibodies.There were no correlations between the presence of IgE antibodies to H.scandens and A.vulgaris or to H.scandens and A.artemisiifolia.Conclusions:The intradermal prevalence of weed pollen sensitization among allergic subjects in northern China is about 13.5%.Correlations of specific IgE antibodies suggest that pollen allergens from Artemisia and Humulus are independent sources for primary sensitization.
基金National Natural Science Foundation of China(31421063)State Key Laboratory of Earth Surface Processes and Resource Ecology(2012-ZY-03)Fundamental Research Funds for the Central Universities.
文摘Aims Flowering time has been suggested to be an important adaptive trait during the dispersal of invasive species,and identifying the molecu-lar mechanisms underlying flowering time may provide insight into the local adaptation during the process of invasion.Here,we con-ducted a preliminary exploration on the genetic basis of the differ-entiation of flowering time in Ambrosia artemisiifolia.Methods using relative real-time fluorescent quantitative polymerase chain reaction,we investigated the expression levels of eight flowering-related genes,including AP1,FT,SOC1,CRY2,FKF1,GI,CO2 and SPY,in leaves and flowers at different time points in individuals from northern beijing and southern Wuhan populations that exhibit significant differences in flowering times to identify any rhythmic changes in gene expression and their association with differential flowering times.Important Findings The differentiation of flowering time in the A.artemisiifolia popula-tions was closely associated with five genes involved in flowering pathways.The floral pathway integrators FT and SOC1 and floral meristem identity gene AP1 exhibited increased expression during flowering.The photoreceptor CRY2 in the light-dependent path-way and the SPY gene in the gibberellin pathway displayed specific expression patterns over time.in earlier-flowering beijing plants,CRY2 expression was lower and SPY expression was higher than in Wuhan plants.The expression patterns of these five genes sug-gest a molecular basis for the differentiation of flowering time in A.artemisiifolia.
基金funded by the National Natural Science Foundation of China(grant no.31972343 and 31372000)Hebei National Natural Science Foundation(C2019201059)College of Life Science,Institute of Life Science and Green Development,Hebei University.
文摘Arbuscular mycorrhizal fungi(AMF)can increase host plant nutrient uptake via their mycelium,thus promoting plant growth.AMF have always been associated with successful invasion of most exotic plant species.However,knowledge regarding how AMF affect the success of plant invasion remains limited.Exotic Ambrosia artemisiifolia is an invasive and mycorrhizal plant species.A long-term field experiment was conducted to examine the differences in AMF diversity and composition in the roots of A.artemisiifolia and Setaria viridis subjected to interspecific competition during growth.A greenhouse experiment was also performed to test the effect of Funneliformis mosseae on the growth of these two species.Ambrosia artemisiifolia invasion caused AMF diversity to change in native S.viridis roots.Meanwhile,the relative abundance of F.mosseae was significantly higher in the roots of A.artemisiifolia than in those of S.viridis.The higher AMF colonization rate in the exotic species(A.artemisiifolia)than in the native species(S.viridis)was found in both the field and greenhouse experiments.The greenhouse experiment possibly provided that AMF advantaged to the growth of A.artemisiifolia,by influencing its photosynthetic capacity as well as its phosphorus and potassium absorption.These observations highlight the important relationship of AMF with the successful invasion of A.artemisiifolia.