【目的】电网电压跌落故障会引起风电机组载荷的剧烈变化,严重影响风电机组的安全稳定运行。随着风电机组的大型化,风电叶片长度不断增加,塔筒增高,其载荷特性对系统参数波动变得敏感。因此,需要研究电网电压跌落过程中关键部件的载荷...【目的】电网电压跌落故障会引起风电机组载荷的剧烈变化,严重影响风电机组的安全稳定运行。随着风电机组的大型化,风电叶片长度不断增加,塔筒增高,其载荷特性对系统参数波动变得敏感。因此,需要研究电网电压跌落过程中关键部件的载荷与振动特性。【方法】提出了基于动态链接库和Socket通信的数据交互方式,建立了Simulink与Bladed的联合仿真方法。基于某3.4 MW风电机组模型,采用给定风速变化的工况对联合仿真平台进行验证。研究了低电压穿越(low voltage ride through,LVRT)过程中机组总体性能与叶片、塔筒载荷的变化关系。【结果】电网电压跌落幅值对电机功率影响较大,对风轮的调节参数影响较小。低电压穿越过程中风轮的桨矩角调节和转速有较长时间的波动,叶片外叶展处载荷的变化大于内叶展处,叶尖位移增加。塔架的振动频率与固有频率接近,存在潜在风险,需要在机组设计中考虑。【结论】联合仿真平台可以很好地模拟风电机组的气动性能与部件载荷的暂态特性,为机组的优化控制提供参考。展开更多
文摘【目的】电网电压跌落故障会引起风电机组载荷的剧烈变化,严重影响风电机组的安全稳定运行。随着风电机组的大型化,风电叶片长度不断增加,塔筒增高,其载荷特性对系统参数波动变得敏感。因此,需要研究电网电压跌落过程中关键部件的载荷与振动特性。【方法】提出了基于动态链接库和Socket通信的数据交互方式,建立了Simulink与Bladed的联合仿真方法。基于某3.4 MW风电机组模型,采用给定风速变化的工况对联合仿真平台进行验证。研究了低电压穿越(low voltage ride through,LVRT)过程中机组总体性能与叶片、塔筒载荷的变化关系。【结果】电网电压跌落幅值对电机功率影响较大,对风轮的调节参数影响较小。低电压穿越过程中风轮的桨矩角调节和转速有较长时间的波动,叶片外叶展处载荷的变化大于内叶展处,叶尖位移增加。塔架的振动频率与固有频率接近,存在潜在风险,需要在机组设计中考虑。【结论】联合仿真平台可以很好地模拟风电机组的气动性能与部件载荷的暂态特性,为机组的优化控制提供参考。