Aminoacyl-tRNA synthetases(aaRSs)are ubiquitously expressed,essential enzymes,synthesizing aminoacyl-tRNAs for protein synthesis.Functional defects of aaRSs frequently cause various human disorders.Human KARS encodes ...Aminoacyl-tRNA synthetases(aaRSs)are ubiquitously expressed,essential enzymes,synthesizing aminoacyl-tRNAs for protein synthesis.Functional defects of aaRSs frequently cause various human disorders.Human KARS encodes both cytosolic and mitochondrial lysyl-tRNA synthetases(LysRSs).Previously,two mutations(c.1129 G>A and c.517 T>C)were identified that led to hearing impairment;however,the underlying biochemical mechanism is unclear.In the present study,we found that the two mutations have no impact on the incorporation of LysRS into the multiple-synthetase complex in the cytosol,but affect the cytosolic LysRS level,its tertiary structure,and cytosolic tRNA aminoacylation in vitro.As for mitochondrial translation,the two mutations have little effect on the steady-state level,mitochondrial targeting,and tRNA binding affinity of mitochondrial LysRS.However,they exhibit striking differences in charging mitochondrial tRNALys,with the c.517T>C mutant being completely deficient in vitro and in vivo.We constructed two yeast genetic models,which are powerful tools to test the in vivo aminoacylation activity of KARS mutations at both the cytosolic and mitochondrial levels.Overall,our data provided biochemical insights into the potentially molecular pathological mechanism of KARS c.1129G>A and c.517T>C mutations and provided yeast genetic bases to investigate other KARS mutations in the future.展开更多
It has been a dream that theoretical biology can be extensively applied in experimental biology to accelerate the understanding of the sophiscated movements in living organisms. A brave assay and an excellent example ...It has been a dream that theoretical biology can be extensively applied in experimental biology to accelerate the understanding of the sophiscated movements in living organisms. A brave assay and an excellent example were represented by enzymology, in which the well-established physico-chemistry is used to describe, to fit, to predict and to improve enzyme reactions. Before the modern bioinformatics, the developments of the combination of theoretical biology and experimental biology have been mainly limited to various classic formulations. The systematic use of graphic rules by Prof. Kuo-Chen Chou and his co-workers has significantly facilitated to deal with complicated enzyme systems. With the recent fast progress of bioinformatics, prediction of protein structures and various protein attributes have been well established by Chou and co-workers, stimulating the experimental biology. For example, their recent method for predicting protein subcellular localization (one of the important attributes of proteins) has been extensively applied by scientific colleagues, yielding many new results with thousands of citations. The research by Prof. Chou is characterized by introducing novel physical concepts as well as powerful and elegant mathematical methods into important biomedical problems, a focus throughout his career, even when facing enormous difficulties. His efforts in 50 years have greatly helped us to realize the dream to make “theoretical and experimental biology in one”. Prof. Richard Giege is well known for his multi-disciplinary research combining physics, chemistry, enzymology and molecular biology. His major focus of study is on the identity of tRNAs and their interactions with aminoacyl-tRNA synthetases (aaRS), which are of critical importance to the fidelity of protein biosynthesis. He and his colleagues have carried out the first crystallization of a tRNA/aaRS complex, that between tRNAAsp and AspRS from yeast. The determination of the complex structure contributed significantly to under- stand the interaction of protein and RNA. From his fine research, they have also found other biological function of these small RNAs. He has developed in parallel appropriate methods for his research, of which the protein crystallogenesis, a name he has coined, is an excellent example. Now macromolecular crystallogenesis has become a developed science. In fact, such contribution has accelerated the development of protein crystallography, stimulating the study of macromolecular structure and function.展开更多
Escherichia coli leucyl-tRNA synthetase (LeuRS) is one of aminoacyl-tRNA synthetases (aaRSs) and belongs to class 1 aaRSs. The apparent steady-state kinetics of the aminoacylation reaction catalyzed by LeuRS in the pr...Escherichia coli leucyl-tRNA synthetase (LeuRS) is one of aminoacyl-tRNA synthetases (aaRSs) and belongs to class 1 aaRSs. The apparent steady-state kinetics of the aminoacylation reaction catalyzed by LeuRS in the presence of some RE3+ were studied. The results show that Mg2+ can be substituted by RE3+ for the aminoacylation reaction. The apparent K-m values for ATP and leucine are markedly different between native and Mg2+-free tRNA(1)(Leu). At high concentration of ATP there is inhibitory effect on Mg2+-free tRNA but not on native tRNA, which indicates that metal ions are a substrate of the aminoacylation reaction.展开更多
The empirical (biochemical, the PCR method) and computational (quantum-chemical, PM3) methods have shown the ability of polysaccharides to catalyze the polymerization of amino acids and nucleotides within the physiolo...The empirical (biochemical, the PCR method) and computational (quantum-chemical, PM3) methods have shown the ability of polysaccharides to catalyze the polymerization of amino acids and nucleotides within the physiologically acceptable temperature range. The possibility of nucleotide aminoacylation in the presence of polysaccharides has been established. The suggestion has been made that abiogenic aminoacylation of nucleotides by polysaccharides served as the prototype of the original aminoacylpre-tRNA-synthetase activity and subsequently determined the formation of the modern mechanism of genetic information transfer via three biopolymer types—nucleic acids, proteins and polysaccharides.展开更多
Transfer RNA plays a fundamental role in the protein biosynthesis as an adaptor molecule by functioning as a biological link between the genetic nucleotide sequence in the mRNA and the amino acid sequence in the prote...Transfer RNA plays a fundamental role in the protein biosynthesis as an adaptor molecule by functioning as a biological link between the genetic nucleotide sequence in the mRNA and the amino acid sequence in the protein.To perform its role in protein biosynthesis,it has to be accurately recognized by aminoacyl-tRNA synthetases(aaRSs)to generate aminoacyl-tRNAs(aa-tRNAs).The correct pairing between an amino acid with its cognate tRNA is crucial for translational quality control.Production and utilization of mis-charged tRNAs are usually detrimental for all the species,resulting in cellular dysfunctions.Correct aa-tRNAs formation is collectively controlled by aaRSs with distinct mechanisms and/or other trans-factors.However,in very limited instances,mis-charged tRNAs are intermediate for specific pathways or essential components for the translational machinery.Here,from the point of accuracy in tRNA charging,we review our understanding about the mechanism ensuring correct aa-tRNA generation.In addition,some unique mis-charged tRNA species necessary for the organism are also briefly described.展开更多
基金supported by the National Key Research and Development Program of China(2017YFA0504000)the National Natural Science Foundation of China(91940302,31500644,31570792,31822015,81870896,31670801)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB19010203)Shanghai Key Laboratory of Embryo Original Diseases(Shelab201904)。
文摘Aminoacyl-tRNA synthetases(aaRSs)are ubiquitously expressed,essential enzymes,synthesizing aminoacyl-tRNAs for protein synthesis.Functional defects of aaRSs frequently cause various human disorders.Human KARS encodes both cytosolic and mitochondrial lysyl-tRNA synthetases(LysRSs).Previously,two mutations(c.1129 G>A and c.517 T>C)were identified that led to hearing impairment;however,the underlying biochemical mechanism is unclear.In the present study,we found that the two mutations have no impact on the incorporation of LysRS into the multiple-synthetase complex in the cytosol,but affect the cytosolic LysRS level,its tertiary structure,and cytosolic tRNA aminoacylation in vitro.As for mitochondrial translation,the two mutations have little effect on the steady-state level,mitochondrial targeting,and tRNA binding affinity of mitochondrial LysRS.However,they exhibit striking differences in charging mitochondrial tRNALys,with the c.517T>C mutant being completely deficient in vitro and in vivo.We constructed two yeast genetic models,which are powerful tools to test the in vivo aminoacylation activity of KARS mutations at both the cytosolic and mitochondrial levels.Overall,our data provided biochemical insights into the potentially molecular pathological mechanism of KARS c.1129G>A and c.517T>C mutations and provided yeast genetic bases to investigate other KARS mutations in the future.
文摘It has been a dream that theoretical biology can be extensively applied in experimental biology to accelerate the understanding of the sophiscated movements in living organisms. A brave assay and an excellent example were represented by enzymology, in which the well-established physico-chemistry is used to describe, to fit, to predict and to improve enzyme reactions. Before the modern bioinformatics, the developments of the combination of theoretical biology and experimental biology have been mainly limited to various classic formulations. The systematic use of graphic rules by Prof. Kuo-Chen Chou and his co-workers has significantly facilitated to deal with complicated enzyme systems. With the recent fast progress of bioinformatics, prediction of protein structures and various protein attributes have been well established by Chou and co-workers, stimulating the experimental biology. For example, their recent method for predicting protein subcellular localization (one of the important attributes of proteins) has been extensively applied by scientific colleagues, yielding many new results with thousands of citations. The research by Prof. Chou is characterized by introducing novel physical concepts as well as powerful and elegant mathematical methods into important biomedical problems, a focus throughout his career, even when facing enormous difficulties. His efforts in 50 years have greatly helped us to realize the dream to make “theoretical and experimental biology in one”. Prof. Richard Giege is well known for his multi-disciplinary research combining physics, chemistry, enzymology and molecular biology. His major focus of study is on the identity of tRNAs and their interactions with aminoacyl-tRNA synthetases (aaRS), which are of critical importance to the fidelity of protein biosynthesis. He and his colleagues have carried out the first crystallization of a tRNA/aaRS complex, that between tRNAAsp and AspRS from yeast. The determination of the complex structure contributed significantly to under- stand the interaction of protein and RNA. From his fine research, they have also found other biological function of these small RNAs. He has developed in parallel appropriate methods for his research, of which the protein crystallogenesis, a name he has coined, is an excellent example. Now macromolecular crystallogenesis has become a developed science. In fact, such contribution has accelerated the development of protein crystallography, stimulating the study of macromolecular structure and function.
文摘Escherichia coli leucyl-tRNA synthetase (LeuRS) is one of aminoacyl-tRNA synthetases (aaRSs) and belongs to class 1 aaRSs. The apparent steady-state kinetics of the aminoacylation reaction catalyzed by LeuRS in the presence of some RE3+ were studied. The results show that Mg2+ can be substituted by RE3+ for the aminoacylation reaction. The apparent K-m values for ATP and leucine are markedly different between native and Mg2+-free tRNA(1)(Leu). At high concentration of ATP there is inhibitory effect on Mg2+-free tRNA but not on native tRNA, which indicates that metal ions are a substrate of the aminoacylation reaction.
文摘The empirical (biochemical, the PCR method) and computational (quantum-chemical, PM3) methods have shown the ability of polysaccharides to catalyze the polymerization of amino acids and nucleotides within the physiologically acceptable temperature range. The possibility of nucleotide aminoacylation in the presence of polysaccharides has been established. The suggestion has been made that abiogenic aminoacylation of nucleotides by polysaccharides served as the prototype of the original aminoacylpre-tRNA-synthetase activity and subsequently determined the formation of the modern mechanism of genetic information transfer via three biopolymer types—nucleic acids, proteins and polysaccharides.
基金supported by the National Key Research and Development Program of China(2021YFA1300800 and 2021YFC2700903)the National Natural Science Foundation of China(32271300,91940302,31900436,and 81870896)+1 种基金the Committee of Science and Technology in Shanghai(22ZR1481300 and 22JC1400503)the Chinese Academy of Sciences(CAS)Project for Young Scientists in Basic Research(YSBR-075).
基金supported by the National Natural Science Foundation of China(31270852,31000355)the National Key Basic Research Program of China(2012CB911000)
文摘Transfer RNA plays a fundamental role in the protein biosynthesis as an adaptor molecule by functioning as a biological link between the genetic nucleotide sequence in the mRNA and the amino acid sequence in the protein.To perform its role in protein biosynthesis,it has to be accurately recognized by aminoacyl-tRNA synthetases(aaRSs)to generate aminoacyl-tRNAs(aa-tRNAs).The correct pairing between an amino acid with its cognate tRNA is crucial for translational quality control.Production and utilization of mis-charged tRNAs are usually detrimental for all the species,resulting in cellular dysfunctions.Correct aa-tRNAs formation is collectively controlled by aaRSs with distinct mechanisms and/or other trans-factors.However,in very limited instances,mis-charged tRNAs are intermediate for specific pathways or essential components for the translational machinery.Here,from the point of accuracy in tRNA charging,we review our understanding about the mechanism ensuring correct aa-tRNA generation.In addition,some unique mis-charged tRNA species necessary for the organism are also briefly described.