期刊文献+
共找到4,968篇文章
< 1 2 249 >
每页显示 20 50 100
Metformin revisited: Does this regulator of AMP-activated protein kinase secondarily affect bone metabolism and prevent diabetic osteopathy? 被引量:9
1
作者 Antonio Desmond McCarthy Ana María Cortizo Claudia Sedlinsky 《World Journal of Diabetes》 SCIE CAS 2016年第6期122-133,共12页
Patients with long-term type 1 and type 2 diabetes mellitus(DM) can develop skeletal complications or "diabetic osteopathy". These include osteopenia, osteoporosis and an increased incidence of low-stress fr... Patients with long-term type 1 and type 2 diabetes mellitus(DM) can develop skeletal complications or "diabetic osteopathy". These include osteopenia, osteoporosis and an increased incidence of low-stress fractures. In this context, it is important to evaluate whether current anti-diabetic treatments can secondarily affect bone metabolism. Adenosine monophosphateactivated protein kinase(AMPK) modulates multiple metabolic pathways and acts as a sensor of the cellular energy status; recent evidence suggests a critical role for AMPK in bone homeostasis. In addition, AMPK activation is believed to mediate most clinical effects of the insulin-sensitizer metformin. Over the past decade, several research groups have investigated the effects of metformin on bone, providing a considerable body of pre-clinical(in vitro, ex vivo and in vivo) as well as clinical evidence for an anabolic action of metformin on bone. However, two caveats should be kept in mind when considering metformin treatment for a patient with type 2 DM at risk for diabetic osteopathy. In the first place, metformin should probably not be considered an antiosteoporotic drug; it is an insulin sensitizer with proven macrovascular benefits that can secondarily improve bone metabolism in the context of DM. Secondly, we are still awaiting the results of randomized placebo-controlled studies in humans that evaluate the effects of metformin on bone metabolism as a primary endpoint. 展开更多
关键词 Diabetes MELLITUS Osteoporosis Bone FRACTURES METFORMIN amp-activated kinase
下载PDF
Metformin attenuates motility,contraction,and fibrogenic response of hepatic stellate cells in vivo and in vitro by activating AMP-activated protein kinase 被引量:11
2
作者 Zhen Li Qian Ding +4 位作者 Li-Ping Ling Ying Wu Dong-Xiao Meng Xiao Li Chun-Qing Zhang 《World Journal of Gastroenterology》 SCIE CAS 2018年第7期819-832,共14页
AIM To investigate the effect of metformin on activated hepatic stellate cells(HSCs) and the possible signaling pathways involved. METHODS A fibrotic mouse model was generated by intraperitoneal injection of carbon te... AIM To investigate the effect of metformin on activated hepatic stellate cells(HSCs) and the possible signaling pathways involved. METHODS A fibrotic mouse model was generated by intraperitoneal injection of carbon tetrachloride(CCl_4) and subsequent treatment with or without metformin. The level of fibrosis was detected by hematoxylin-eosin staining, Sirius Red staining, and immunohistochemistry. The HSC cell line LX-2 was used for in vitro studies. The effect of metformin on cell proliferation(CCK8 assay),motility(scratch test and Transwell assay), contraction(collagen gel contraction assay), extracellular matrix(ECM) secretion(Western blot), and angiogenesis(ELISA and tube formation assay) was investigated. We also analyzed the possible signaling pathways involved by Western blot analysis.RESULTS Mice developed marked liver fibrosis after intraperitoneal injection with CCl_4 for 6 wk. Metformin decreased the activation of HSCs, reduced the deposition of ECM, and inhibited angiogenesis in CCl_4-treated mice. Platelet-derived growth factor(PDGF) promoted the fibrogenic response of HSCs in vitro, while metformin inhibited the activation, proliferation, migration, and contraction of HSCs, and reduced the secretion of ECM. Metformin decreased the expression of vascular endothelial growth factor(VEGF) in HSCs through inhibition of hypoxia inducible factor(HIF)-1α in both PDGF-BB treatment and hypoxic conditions, and it down-regulated VEGF secretion by HSCs and inhibited HSC-based angiogenesis in hypoxic conditions in vitro. The inhibitory effects of metformin on activated HSCs were mediated by inhibiting the Akt/mammalian target of rapamycin(m TOR) and extracellular signal-regulated kinase(ERK) pathways via the activation of adenosine monophosphate-activated protein kinase(AMPK).CONCLUSION Metformin attenuates the fibrogenic response of HSCs in vivo and in vitro, and may therefore be useful for the treatment of chronic liver diseases. 展开更多
关键词 hepatic stellate cell INTRAHEPATIC vascular resistance angiogenesis CONTRACTION liver fibrosis ADENOSINE monophosphate-activated protein kinase
下载PDF
Hippocampal activation of c-Jun N-terminal kinase,protein kinase B,and p38 mitogen-activated protein kinase in a chronic stress rat model of depression 被引量:1
3
作者 Wei Dai Weidong Li +2 位作者 Jun Lu Yingge A Ya Tu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第19期1486-1490,共5页
Recent studies have shown that varied stress stimuli activate c-Jun N-terminal kinase (JNK), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38) signal transduction pathway, and also regulate ... Recent studies have shown that varied stress stimuli activate c-Jun N-terminal kinase (JNK), protein kinase B (Akt), and p38 mitogen-activated protein kinase (p38) signal transduction pathway, and also regulate various apoptotic cascades. JNK and p38 promote apoptosis, but Akt protects against apoptosis, in hippocampal neurons. However, changes in the transduction pathway in different regions of brain tissues in a chronic stress rat model of depression remain poorly understood. Results from this study showed that JNK phosphorylation levels were significantly greater in the stress group hippocampus compared with the control group (P 〈 0.05). No significant difference in JNK phosphorylation levels was detected in the rat cerebral cortex between stress and control groups, and no significant difference in Akt and p38 phosphorylation levels was detected in the rat hippocampus and cerebral cortex between stress and control groups (P 〉 0.05). These results suggested that the JNK signal pathway is activated by JNK phosphorylation and participates in pathophysiological changes in rat models of depression. 展开更多
关键词 DEPRESSION chronic stress PHOSPHORYLATION stress-activated protein kinase protein kinase B p38 mitogen-activated protein kinase neural regeneration
下载PDF
Jiawei Wendan decoction affects mitogen-activated protein kinase signal pathway in the hippocampus of depression rats 被引量:2
4
作者 Liping Zhang Man Zhang +2 位作者 Li Wu Meng Xia Guangbin Li 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第36期2805-2809,共5页
A previous study from our group showed that Jiawei Wendan decoction inhibits protein expression of interleukin-1β, 2, and 6, as well as plasma neuropeptide Y, P substance and somatostatin in the hippocampus of depres... A previous study from our group showed that Jiawei Wendan decoction inhibits protein expression of interleukin-1β, 2, and 6, as well as plasma neuropeptide Y, P substance and somatostatin in the hippocampus of depression rat models. The present study analyzed the influence of Jiawei Wendan decoction on the mitogen-activated protein kinase signal transduction pathway in the hippocampus. Results demonstrated that Jiawei Wendan decoction effectively upregulated expression of small molecular G proteins, extracellular regulated kinase 1/2, and activated ribosomal S6 kinase protein in the rat hippocampus. In addition, Jiawei Wendan decoction exhibits antidepressant effects similar to fluoxetine. The underlying mechanisms were shown to be dependent on increased mitogen-activated protein kinase signal transduction pathway activity. 展开更多
关键词 DEPRESSION hippocarn-pus mitogen-activated protein kinase pathway neural regeneration pathogenesis RATS SPLEEN STOMACH
下载PDF
Electroacupuncture reduces apoptotic index and inhibits p38 mitogen-activated protein kinase signaling pathway in the hippocampus of rats with cerebral ischemia/reperfusion injury 被引量:18
5
作者 Xiao Lan Xin Zhang +3 位作者 Guo-ping Zhou Chun-xiao Wu Chun Li Xiu-hong Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期409-416,共8页
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr... Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves. 展开更多
关键词 nerve regeneration brain injury ELECTROACUPUNCTURE cell apoptosis cerebral ischemia/reperfusion injury neurological impairment score morphological changes immunohistoehemical assay p38 mitogen-activated protein kinases phosphorylated p38 HIPPOCampUS neural regeneration
下载PDF
Antagonistic Effects of N-acetylcysteine on Mitogen-activated Protein Kinase Pathway Activation, Oxidative Stress and Inflammatory Responses in Rats with PM2.5 Induced Lung Injuries 被引量:6
6
作者 平芬 曹芹 +1 位作者 林桦 韩书芝 《Chinese Medical Sciences Journal》 CAS CSCD 2019年第4期270-276,共7页
Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine ... Objective To evaluate the antagonistic effects of N-acetylcysteine(NAC)on mitogen-activated protein kinases(MAPK)pathway activation,oxidative stress and inflammatory responses in rats with lung injury induced by fine particulate matter(PM2.5).Methods Forty eight male Wistar rats were randomly divided into six groups:blank control group(C1),water drip control group(C2),PM2.5 exposed group(P),low-dose NAC treated and PM2.5 exposed group(L),middle-dose NAC treated and PM2.5 exposed group(M),and high-dose NAC treated and PM2.5 exposed group(H).PM2.5 suspension(7.5 mg/kg)was administered tracheally once a week for four times.NAC of 125 mg/kg,250 mg/kg and 500 mg/kg was delivered intragastrically to L,M and H group respectively by gavage(10 ml/kg)for six days before PM2.5 exposure.The histopathological changes and human mucin 5 subtype AC(MUC5AC)content in lung tissue of rats were evaluated.We investigated IL-6 in serum and bronchoalveolar lavage fluid(BALF)by Enzyme-linked immunosorbent assay(ELISA),MUC5AC in lung tissue homogenate by ELISA,glutathione peroxidase(GSH-PX)in serum and BALF by spectrophotometry,and the expression of p-ERK1/2,p-JNK1/2 and p-p38 proteins by Western blot.All the measurements were analyzed and compared statistically.Results Lung tissue of rats exposed to PM2.5 showed histological destruction and increased mucus secretion of bronchial epithelial cells.Rats receiving NAC treatment showed less histological destruction and mucus secretion.Of P,L,M and H group,MUC5AC in lung tissue,IL-6 in serum and BALF were higher than controls(C1 and C2)(all P<0.05),with the highest levels found in the P group and a decreasing trend with increase of NAC dose.The activity of GSH-PX in serum and BALF of PM2.5 exposed rats(P,L,M and H)was lower than that of controls(all P<0.05),with higher activities found in NAC treated rats(L,M,and H),and an increasing trend with increase of NAC dose.The expressions of p-ERK1/2,p-JNK1/2 and p-p38 proteins in PM2.5 exposed lung tissue(P,L,M and H)was higher than controls(all P<0.05),with decreased levels and dose dependent downregulation found in NAC treated rats.Conclusion NAC can antagonize major MAPK pathway activation,lung oxidative stress and inflammatory injury induced by PM2.5 in rats. 展开更多
关键词 fine particulate matter(PM2.5) N-ACETYLCYSTEINE mitogen-activated protein kinases oxidative stress inflammatory response RATS
下载PDF
Clinical significance of upregulated Rho GTPase activating protein 12 causing resistance to tyrosine kinase inhibitors in hepatocellular carcinoma
7
作者 Xiao-Wei Wang Yu-Xing Tang +11 位作者 Fu-Xi Li Jia-Le Wang Gao-Peng Yao Da-Tong Zeng Yu-Lu Tang Bang-Teng Chi Qin-Yan Su Lin-Qing Huang Di-Yuan Qin Gang Chen Zhen-Bo Feng Rong-Quan He 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第10期4244-4263,共20页
BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment fo... BACKGROUND Hepatocellular carcinoma(HCC)is a major health challenge with high incidence and poor survival rates in China.Systemic therapies,particularly tyrosine kinase inhibitors(TKIs),are the first-line treatment for advanced HCC,but resistance is common.The Rho GTPase family member Rho GTPase activating protein 12(ARHGAP12),which regulates cell adhesion and invasion,is a potential therapeutic target for overcoming TKI resistance in HCC.However,no studies on the expression of ARHGAP12 in HCC and its role in resistance to TKIs have been reported.AIM To unveil the expression of ARHGAP12 in HCC,its role in TKI resistance and its potential associated pathways.METHODS This study used single-cell RNA sequencing(scRNA-seq)to evaluate ARHGAP12 mRNA levels and explored its mechanisms through enrichment analysis.CellChat was used to investigate focal adhesion(FA)pathway regulation.We integrated bulk RNA data(RNA-seq and microarray),immunohistochemistry and proteomics to analyze ARHGAP12 mRNA and protein levels,correlating with clinical outcomes.We assessed ARHGAP12 expression in TKI-resistant HCC,integrated conventional HCC to explore its mechanism,identified intersecting FA pathway genes with scRNA-seq data and evaluated its response to TKI and immunotherapy.RESULTS ARHGAP12 mRNA was found to be highly expressed in malignant hepatocytes and to regulate FA.In malignant hepatocytes in high-score FA groups,MDK-[integrin alpha 6(ITGA6)+integrinβ-1(ITGB1)]showed specificity in ligand-receptor interactions.ARHGAP12 mRNA and protein were upregulated in bulk RNA,immunohistochemistry and proteomics,and higher expression was associated with a worse prognosis.ARHGAP12 was also found to be a TKI resistance gene that regulated the FA pathway.ITGB1 was identified as a crossover gene in the FA pathway in both scRNA-seq and bulk RNA.High expression of ARHGAP12 was associated with adverse reactions to sorafenib,cabozantinib and regorafenib,but not to immunotherapy.CONCLUSION ARHGAP12 expression is elevated in HCC and TKI-resistant HCC,and its regulatory role in FA may underlie the TKI-resistant phenotype. 展开更多
关键词 Hepatocellular carcinoma Focal adhesion Tyrosine kinase inhibitor Rho GTPase activating protein 12 Drug resistance Molecular mechanism BIOMARKER
下载PDF
Diabetes and high-glucose could upregulate the expression of receptor for activated C kinase 1 in retina
8
作者 Jian Tan Ang Xiao +3 位作者 Lin Yang Yu-Lin Tao Yi Shao Qiong Zhou 《World Journal of Diabetes》 SCIE 2024年第3期519-529,共11页
BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its d... BACKGROUND Diabetic retinopathy(DR)is a major ocular complication of diabetes mellitus,leading to visual impairment.Retinal pigment epithelium(RPE)injury is a key component of the outer blood retinal barrier,and its damage is an important indicator of DR.Receptor for activated C kinase 1(RACK1)activates protein kinase C-ε(PKC-ε)to promote the generation of reactive oxygen species(ROS)in RPE cells,leading to apoptosis.Therefore,we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS,thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR.AIM To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR.METHODS In this study,Sprague-Dawley rats and adult RPE cell line-19(ARPE-19)cells were used as in vivo and in vitro models,respectively,to explore the role of RACK1 in mediating PKC-εin early DR.Furthermore,the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model.RESULTS Streptozotocin-induced diabetic rats showed increased apoptosis and upregulated expression of RACK1 and PKC-εproteins in RPE cells following a prolonged modeling.Similarly,ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε,accompanied by an increases in ROS production,apoptosis rate,and monolayer permeability.However,silencing RACK1 significantly downregulated the expression of PKC-εand ROS,reduced cell apoptosis and permeability,and protected barrier function.CONCLUSION RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function. 展开更多
关键词 Diabetic retinopathy Receptor for activated C kinase 1 protein kinase C-ε Adult retinal pigment epithelium cell line-19
下载PDF
Physiological roles of mitogen-activated-protein-kinase-activated p38-regulated/activated protein kinase 被引量:8
9
作者 Sergiy Kostenko Gianina Dumitriu +1 位作者 Kari Jenssen Lgreid Ugo Moens 《World Journal of Biological Chemistry》 CAS 2011年第5期73-89,共17页
Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation ... Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed. 展开更多
关键词 MITOGEN-activated protein kinase p38- regulated/activated protein kinase Extracellular signalregulated kinase protein kinase A SUBCELLULAR localization Phosphorylation protein interaction
下载PDF
Neuroprotective mechanisms of rutin for spinal cord injury through anti-oxidation and anti-inflammation and inhibition of p38 mitogen activated protein kinase pathway 被引量:10
10
作者 Hong-liang Song Xiang Zhang +5 位作者 Wen-zhao Wang Rong-han Liu Kai Zhao Ming-yuan Liu Wei-ming Gong Bin Ning 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期128-134,共7页
Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase... Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen’s method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway. 展开更多
关键词 nerve regeneration spinal cord injury RUTIN oxidative stress antioxidant ANTI-INFLAMMATION p38 mitogen activated protein kinase pathway ANTI-APOPTOSIS caspase-3 caspase-9 neural regeneration
下载PDF
Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway 被引量:12
11
作者 Ning Yang Juan-Juan Shi +6 位作者 Feng-Ping Wu Mei Li Xin Zhang Ya-Ping Li Song Zhai Xiao-Li Jia Shuang-Suo Dang 《World Journal of Gastroenterology》 SCIE CAS 2017年第7期1203-1214,共12页
AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro a... AIM To investigate the antioxidant effect of caffeic acid phenethyl ester (CAPE) in hepatic stellate cell-T6 (HSC-T6) cells cultured in vitro and the potential mechanisms. METHODS HSC-T6 cells were cultured in vitro and treated with various concentrations of CAPE for 24, 48 and 72 h, respectively. Cell proliferation was investigated using the MTT assay, and cell ultrastructural alterations were observed by transmission electron microscopy. Flow cytometry was employed to investigate the effects of CAPE on apoptosis and the levels of reactive oxygen species in HSC-T6 cells cultured in vitro. An enzyme immunoassay instrument was used to evaluate antioxidant enzyme expression. The effect on alpha-smooth muscle actin was shown using immunofluorescence. Gene and protein levels of Nrf2, related factors, and mitogen activated protein kinases (MAPKs), in HSC-T6 cells were detected using RT-PCR and Western blot, respectively. RESULTS CAPE inhibited the proliferation and activation of HSC-T6 cells cultured in vitro. CAPE increased the antioxidant levels and the translocation of Nrf2 from the cytoplasm to the nucleus in HSC-T6 cells. Moreover, the phosphorylation of MAPKs in cells decreased in response to CAPE. Interestingly, CAPE-induced oxidative stress in the cells was significantly attenuated by pretreatment with MAPKs inhibitors. CONCLUSION CAPE inhibits cell proliferation and up-regulates the antioxidant levels in HSC-T6 cells partly through the Nrf2-MAPKs signaling pathway. 展开更多
关键词 Caffeic acid phenethyl ester Liver fibrosis ANTIOXIDATION Nrf2 Mitogen activated protein kinases
下载PDF
Developmental Lead Exposure Alters the Distribution of Protein Kinase C Activity in the Rat Hippocampus 被引量:7
12
作者 HWEI-HSIEN CHEN TANGENG MA +1 位作者 ARTHUR S. HUME AND ING K. HO(Deportment of Pharmacology and Toxicology, University ofMississippi Medical Center, 2500 North State Street,Jackson, MS 39216, USA) 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 1998年第1期61-69,共9页
Chronic low-level lead (Pb) exposure in children is known to cause a deficit in learning and memory. In vitro studies have demonstrated that Pb altered protein kinase C (PKC) activityt Especially, hippocampal PKC has ... Chronic low-level lead (Pb) exposure in children is known to cause a deficit in learning and memory. In vitro studies have demonstrated that Pb altered protein kinase C (PKC) activityt Especially, hippocampal PKC has been correlated with performance in several learning tasks. The effects of Pb exposure on hippocampal PKC were investigated during development at various postnatal ages: postnatal day (PN) 7, 14, 28, and 56. Two-tenth % Pb acetate was administered to pregnant and lactating dams and then administered to weanling rats in drinking water. PKC activity was measured in both membrane and cytosolic fractions from the hippocampi of the controls and Pb-exposed animals. Pb-induced increase in PKC activity in the cytosolic fraction was obsereved in the PN56 rats. In contrast, PKC activity was decreased by Pb at PN7 in the membrane fraction. Furthermore, a significant decrease in the ratio of membrane to cytosolic PKC activity which is representative of PKC distribution was observed in the PN28 and PN56 Pb-exposed rats relative to the same-age controls. This study indicates that chronic Pb exposure during development influences hippocampal PKC activity and distribution. These changes may be involved in the subclinical neurotoxicity of chronic Pb exposure in young children. 展开更多
关键词 activITY PB Developmental Lead Exposure Alters the Distribution of protein kinase C activity in the Rat Hippocampus
下载PDF
Xuebijing alters tumor necrosis factor-alpha, interleukin-1beta and p38 mitogen activated protein kinase content in a rat model of cardiac arrest following cardiopulmonary resuscitation 被引量:2
13
作者 Haifeng Li Mingli Sun Yaxin Yu Xiaoliang Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第33期2573-2576,共4页
We established a rat model of cardiac arrest by clamping the endotracheal tube of adult rats at expiration. Twenty-four hours after cardiopulmonary resuscitation, nerve cell injury and expression of tumor necrosis fac... We established a rat model of cardiac arrest by clamping the endotracheal tube of adult rats at expiration. Twenty-four hours after cardiopulmonary resuscitation, nerve cell injury and expression of tumor necrosis factor-α, interleukin-1β, and p38 mitogen activated protein kinase content were increased. Rats injected with Xuebijing, a Chinese herb compound preparation, exhibited normal cellular structure and morphology, dense neuronal cytoplasm, and decreased tumor necrosis factor-α, interleukin-1β, and p38 mitogen activated protein kinase expression at 24 hours following cardiopulmonary resuscitation. These data suggest that Xuebijing can attenuate neuronal injury induced by hypoxia and reperfusion during cardiopulmonary resuscitation. 展开更多
关键词 cardiac arrest brain tumor necrosis factor-α INTERLEUKIN-1Β p38 mitogen activated protein kinase XUEBIJING cardiopulmonary resuscitation
下载PDF
Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer 被引量:13
14
作者 Mei Yang Chang-Zhi Huang 《World Journal of Gastroenterology》 SCIE CAS 2015年第41期11673-11679,共7页
The mortality rate of gastric cancer worldwide is as high as 70%, despite the development of novel therapeutic strategies. One reason for the high mortality is the rapid and uninhibited spread of the disease, such tha... The mortality rate of gastric cancer worldwide is as high as 70%, despite the development of novel therapeutic strategies. One reason for the high mortality is the rapid and uninhibited spread of the disease, such that the majority of patients are diagnosed at a stage when efficient therapeutic treatment is not available. Therefore, in-depth research is needed to investigate the mechanism of gastric cancer metastasis and invasion to improve outcomes and provide biomarkers for early diagnosis. The mitogen-activated protein kinase(MAPK) signaling pathway is widely expressed in multicellular organisms, with critical roles in multiple biological processes, such as cell proliferation, death, differentiation, migration, and invasion. The MAPK pathway typically responds to extracellular stimulation. However, the MAPK pathway is often involved in the occurrence and progression of cancer when abnormally regulated. Many studies have researched the relationship between the MAPK signaling pathway and cancer metastasis and invasion, but little is known about the important roles that the MAPK signaling pathway plays in gastric cancer. Based on an analysis of published data, this review aims to summarize the important role that the MAP kinases play in the invasion and metastasis of gastric cancer and attempts to provide potential directions for further research and clinical treatment. 展开更多
关键词 MITOGEN-activated protein kinase GASTRIC cancer Si
下载PDF
Downregulation of cold-inducible RNA-binding protein activates mitogen-activated protein kinases and impairs spermatoRenic function in mouse testes 被引量:8
15
作者 Zhi-Ping Xia Xin-Min Zheng +3 位作者 Hang Zheng Xiao-Jun Liu Gui-Yong Liu Xing-Huan Wang 《Asian Journal of Andrology》 SCIE CAS CSCD 2012年第6期884-889,共6页
Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purp... Cold-inducible RNA-binding protein (CIRP) is an RNA-binding protein that is expressed in normal testes and downregulated after heat stress caused by cryptorchidism, varicocele or environmental temperatures. The purpose of this study was to investigate the functions of CIRP in the testes. We employed RNAi technique to knock down the expression of CIRP in the testes, and performed haematoxylin and eosin staining to evaluate morphological changes following knockdown. Germ cell apoptosis was examined by terminal deoxynucleotidal transferase-mediated dUTP nick end labelling (TUNEL) assay, and mitogen-activated protein kinase (MAPK) signalling pathways were investigated by Western blotting to determine the possible mechanism of apoptosis. We found that using siRNA is a feasible and reliable method for knocking down gene expression in the testes. Compared to controls, the mean seminiferous tubule diameter (MSTD) and the thickness of the germ cell layers decreased following siRNA treatment, whereas the percentage of apoptotic seminiferous tubules increased. The p44/p42, p38 and SAPK/JNK MAPK pathways were activated after downregulation of CIRP. In conclusion, we discovered that downregulation of CIRP resulted in increased germ cell apoptosis, possibly viathe activation of the p44/p42, p38 and SAPK/JNK MAPK pathways. 展开更多
关键词 cold-inducible RNA-binding protein (CIRP) mitogen-activated protein kinase (MAPK) siRNA in vivo SPERMATOGENESIS heat stress male infertility
下载PDF
Cathelicidin stimulates colonic mucus synthesis by up-regulating MUC1 and MUC2 expression through a mitogen-activated protein kinase pathway 被引量:2
16
作者 CHO Chi-hin 《沈阳药科大学学报》 CAS CSCD 北大核心 2008年第S1期3-3,共1页
Objective Mucus forms the physical barrier along the gastrointestinal(GI)tract.It plays an important role to prevent mucosal damage and inflammation.Our previous finding showed that antibacterial peptide 'cathelic... Objective Mucus forms the physical barrier along the gastrointestinal(GI)tract.It plays an important role to prevent mucosal damage and inflammation.Our previous finding showed that antibacterial peptide 'cathelicidin' increased mucus thickness and prevented inflammation in the colon.In the current study,we examined the protective mechanisms by which the peptide increased mucus synthesis in vitro.Methods Human colonic cell line(HT-29)was used to assess the stimulatory action of cathelicidin on mucus synthesis which was measured by the D-[6-3H] glucosamine incorporation assay.Results Human cathelicidin(LL-37)dose-dependently(10-40 μg·mL-1)and significantly stimulated mucus synthesis.Real-time PCR data showed that addition of LL-37 induced more than 50% increase in MUC1 and MUC2 mRNA levels.Treatment with MUC1 and MUC2 siRNAs normalized the stimulatory action of LL-37 on mucus synthesis.LL-37 also activated the phosphorylation of mitogen-activated protein(MAP)kinase in the cells.A specific inhibitor of the MAP kinase pathway,U0126,completely blocked the increase of MUC1 and MUC2 expression as well as mucus synthesis by LL-37.Conclusions Taken together LL-37 stimulates mucus synthesis through the activation of MUC1 and MUC2 expression and the MAP kinase pathway in human colonic cells. 展开更多
关键词 CATHELICIDIN MUCUS MUCIN MITOGEN-activated protein kinase
下载PDF
Mechanism of Retinoic Acid and Mitogen-activated Protein Kinases Regulating Hyperoxia Lung Injury 被引量:3
17
作者 李文斌 常立文 +5 位作者 容志惠 张谦慎 王华 汪鸿 刘春梅 刘伟 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第2期178-181,共4页
To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (t... To investigate the protective effect of retinoic acid (RA) on hyperoxic lung injury and the role of RA as a modulator on mitogen-activated protein kinases (MAPKs), gastation 21 d Sprague- Dawley (SD) fetuses (term = 22 d) were delivered by hysterotomy. Within 12-24 h of birth, premature rat pups were randomly divided into 4 groups (n= 12 each) : air-exposed control group (group Ⅰ ) ; hyperoxia-exposed group ( group Ⅱ ), air-exposed plus RA group (group Ⅲ ), hyperoxia-exposed plus RA group (group Ⅳ). Group Ⅰ , Ⅲ were kept in room air, and group Ⅱ , Ⅳ were placed in 85 % oxygen. The pups in groups Ⅲ and Ⅳ were intraperitoneally injected with RA (500 μg/kg every day). All lung tissues of premature rat pups were collected at the 4th day after birth. Terminal transferase d-UTP nick end labeling (TUNEL) staining was used for the detection of cell apoptosis. The expression of PCNA was immunohistochemically detected. Western blot analysis was employed for the determination of phosphorylated and total nonphosphorylated ERKs, JNKs or p38. Our results showed that lungs from the pups exposed to hyperoxia for 4 d exhibited TUNEL-positive nuclei increased markedly throughout the parenchyma (P〈0.01), and decreased significantly after RA treatment (P〈0.01). The index of PCNA-positive cells was significantly decreased (P〈0.01), and was significantly increased by RA treatment (P〈0.01). The air-space size was significantly enlarged, secondary crests were markedly decreased in hyperoxia-exposed animals. RA treatment improved lung air spaces and secondary crests in air-exposed pups, hut had no effect on hyperoxia-exposure pups. Western blotting showed that the amounts of JNK, p38 and ERK proteins in hyperoxia-exposure or RA-treated lung tissues were same as those in untreated lung tissues (P〈0.05), whereas activation of these MAPKs was markedly altered by hyperoxia and RA. After hyperoxia exposure, p-ERK1/2, p-JNK1/2 and p-p38 were dramatically increased (P〈0.01), whereas p-JNK1/2 and p-p38 were markedly declined and p-ERK1/2 was further elevated by RA treatment (P〈0.01). It is concluded that RA could decrease cell apoptosis and stimulate cell proliferation under hyperoxic condition. The protection Of RA on hyperoxia-induced lung injury was related'to the regulation of MAP kinase activation. 展开更多
关键词 hyperoxia lung injury mitogen-activated protein kinases retinoic acid APOPTOSIS PROLIFERATION
下载PDF
Mitogen-activated protein kinase phosphatase 1 protects PC12 cells from amyloid beta-induced neurotoxicity 被引量:7
18
作者 Yue Gu Lian-Jun Ma +4 位作者 Xiao-Xue Bai Jing Jie Xiu-Fang Zhang Dong Chen Xiao-Ping Li 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1842-1850,共9页
The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosp... The mitogen-activated protein kinase(MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, transformation and death. Mitogen-activated protein kinase phosphatase 1(MKP1) has an inhibitory effect on the p38 MAPK and JNK pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells were infected with MKP1 sh RNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid beta 42(Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha(TNF-α) and interleukin-1β(IL-1β) m RNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phospho-c-Jun N-terminal kinase(JNK) expression levels were assessed using western blot assay. Reactive oxygen species(ROS) levels were detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dismutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase d UTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phosphorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK signaling pathway, thereby playing a neuroprotective role. 展开更多
关键词 nerve regeneration mitogen-activated protein kinase phosphatase 1 c-Jun N-terminal kinase signaling pathway Alzheimer's disease neurons DEMENTIA apoptosis RNA interference lentivirus inflammation oxidative stress neural regeneration
下载PDF
Effects of Mitogen-activated Protein Kinase Signal Pathway on Heat Shock Protein 27 Expression in Human Lens Epithelial Cells Exposed to Sodium Salicylate in vitro 被引量:2
19
作者 王智 高瑞莹 +2 位作者 黄渝侃 田博 周龑莉 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第3期377-382,共6页
The roles of mitogen-activated protein kinase (MAPK) signal pathway in sodium salieylate-induced expression of heat shock protein 27 (HSP27) in human lens epithelial cells (HLECs-B3) in vitro were investigated. ... The roles of mitogen-activated protein kinase (MAPK) signal pathway in sodium salieylate-induced expression of heat shock protein 27 (HSP27) in human lens epithelial cells (HLECs-B3) in vitro were investigated. HLECs-B3 were incubated in the fresh media containing sodium salicylate at different concentrations for different durations, and allowed to be recovered in fresh medium without sodium salicylate for different durations with or without pretreatment with p38MAPK inhibitor (SB203580), ERK1/2 inhibitor (PD98059) and JNK/SAPK inhibitor (SP600125). The expression of P38MAPK, ERK1/2, JNK/SAPK, phosphorylated P38MAPK, phosphorylated ERK1/2, phosphorylated JNK/SAPK and HSP27 was detected by Western blot. The expression of HSP27 mRNA and protein was detected by RT-PCR and immunohistochemistry respectively. It was found there was only weak expression of HSP27 in normal HLECs. The expression of HSP27 was not detectable in HLECs-B3 that were exposed to sodium salicylate (55 retool/L) for 1-5 h. It was indicated that recovery from sodium salicylate (〉35 mmol/L) significantly increased the synthesis of HSP27. The expression of HSP27 was up-regulated in HLECs-B3 under sodium salicylate recovery for 3 h, reached the peak level for 6 h, and returned to the level of control cells by 24 h. Activation of P38MAPK from sodium salicylate stimulation occurred at 30th rain, and increased significantly at 1st h, then declined and renamed to baseline level at 3rd h under sodium salicylate recovery. Activation of ERK1/2 occurred at 1st h and reached the peak level at 6th h under sodium salicylate recovery. However, JNK/SAPK was inactivated by sodium salicylate. The expression of HSP27 could be down-regulated with the pretreatment of SB203580 and PD98059 jointly. It is concluded that sodium salicylate can induce the expression of HSP27 in HLECs-B3. The effects are mediated, at least in part, through the activation of P38MAPK and ERK1/2 signaling pathway. 展开更多
关键词 sodium salicylate human lens epithelial cells mitogen-activated protein kinase heat shock protein
下载PDF
Inhibiting p38 mitogen-activated protein kinase attenuates cerebral ischemic injury in Swedish mutant amyloid precursor protein transgenic mice 被引量:1
20
作者 Liangyu Zou Haiyan Qin +3 位作者 Yitao He Heming Huang Yi Lu Xiaofan Chu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第14期1088-1094,共7页
Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor $B239063 into Swedish mutant amyloid precursor protein (APP/SW... Cerebral ischemia was induced using photothrombosis 1 hour after intraperitoneal injection of the p38 mitogen-activated protein kinase (MAPK) inhibitor $B239063 into Swedish mutant amyloid precursor protein (APP/SWE) transgenic and non-transgenic mice. The number of surviving neurons in the penumbra was quantified using Nissl staining, and the activity of p38 MAPKs was measured by western blotting. The number of surviving neurons in the penumbra was significantly reduced in APP/SWE transgenic mice compared with non-transgenic controls 7 days after cerebral ischemia, but the activity of p38 MAPKs was significantly elevated compared with the non-ischemic hemisphere in the APP/SWE transgenic mice. SB239063 prevented these changes. The APP/SWE mutation exacerbated ischemic brain injury, and this could be alleviated by inhibiting p38 MAPK activity. 展开更多
关键词 cerebral ischemia amyloid precursor protein TRANSGENIC Alzheimer's disease p38mitogen-activated protein kinase SB239063 neural regeneration
下载PDF
上一页 1 2 249 下一页 到第
使用帮助 返回顶部