期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
The Effect of Different Freeze-Thaw Cycles on Mortar Gas Permeability and Pore Structure
1
作者 Wei Chen Ao Xu +3 位作者 Hejun Zhang Mingquan Sheng Yue Liang Frederic Skoczylas 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1623-1636,共14页
Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-free... Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-freezing/air-thawing(AF-AT)cycles.The problem is addressed experimentally through an advanced nuclear magnetic resonance(NMR)technique able to provide meaningful information on the relationships among gas permeability,pore structure,mechanical properties,and the number of cycles.It is shown that the mortar gas permeability increases with the number of FTCs,the increase factor being 20 and 12.83 after 40 cycles for the WF-WT and AF-AT,respectively.The results also confirm that gas permeability hysteresis phenomena occur during the confining pressure loading and unloading process. 展开更多
关键词 MORTAR freeze-thaw cycles gas permeability pore structure NMR mechanical properties
下载PDF
Experimental Evaluation of Compressive Strength and Gas Permeability of Glass- Powder-Containing Mortar
2
作者 Yue Liang Wenxuan Dai Wei Chen 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2639-2659,共21页
Glass powder of various particle sizes(2,5,10 and 15μm)has been assessed as a possible cement substitute for mortars.Different replacement rates of cement(5%,10%,15%,and 20%)have been considered for all particle size... Glass powder of various particle sizes(2,5,10 and 15μm)has been assessed as a possible cement substitute for mortars.Different replacement rates of cement(5%,10%,15%,and 20%)have been considered for all particle sizes.The accessible porosity,compressive strength,gas permeability and microstructure have been investigated accordingly.The results have shown that adding glass powder up to 20%has a significantly negative effect on the porosity and compressive strength of mortar.The compressive strength initially rises with a 5%replacement and then decreases.Similarly,the gas permeability of the mortar displays a non-monotonic behavior;first,it decreases and then it grows with an increase in the glass powder content and particle size.The porosity and gas permeability attain a minimum for a 5%content and 10μm particle size.Application of a Nuclear magnetic resonance(NMR)technique has revealed that incorporating waste glass powder with a certainfineness can reduce the pore size and the number of pores of the mortar.Compared with the control mortar,the pore volume of the waste glass mortar with 5%and 10μm particle size is significantly reduced.When cement is partially replaced by glass powder with a particle size of 10μm and a 5%percentage,the penetration resistance and compressive strength of the mortar are significantly improved. 展开更多
关键词 Waste glass powder MORTAR POROSITY gas permeability compressive strength NMR
下载PDF
Analysis of gas transport behavior in organic and inorganic nanopores based on a unified apparent gas permeability model 被引量:1
3
作者 Qi Zhang Wen-Dong Wang +2 位作者 Yilihamu Kade Bo-Tao Wang Lei Xiong 《Petroleum Science》 SCIE CAS CSCD 2020年第1期168-181,共14页
Different from the conventional gas reservoirs,gas transport in nanoporous shales is complicated due to multiple transport mechanisms and reservoir characteristics.In this work,we presented a unified apparent gas perm... Different from the conventional gas reservoirs,gas transport in nanoporous shales is complicated due to multiple transport mechanisms and reservoir characteristics.In this work,we presented a unified apparent gas permeability model for real gas transport in organic and inorganic nanopores,considering real gas effect,organic matter(OM)porosity,Knudsen diffusion,surface diffusion,and stress dependence.Meanwhile,the effects of monolayer and multilayer adsorption on gas transport are included.Then,we validated the model by experimental results.The influences of pore radius,pore pressure,OM porosity,temperature,and stress dependence on gas transport behavior and their contributions to the total apparent gas permeability(AGP)were analyzed.The results show that the adsorption effect causes Kn(OM)>Kn(IM)when the pore pressure is larger than 1 MPa and the pore radius is less than 100 nm.The ratio of the AGP over the intrinsic permeability decreases with an increase in pore radius or pore pressure.For nanopores with a radius of less than 10 nm,the effects of the OM porosity,surface diffusion coefficient,and temperature on gas transport cannot be negligible.Moreover,the surface diffusion almost dominates in nanopores with a radius less than 2 nm under high OM porosity conditions.For the small-radius and low-pressure conditions,gas transport is governed by the Knudsen diffusion in nanopores.This study focuses on revealing gas transport behavior in nanoporous shales. 展开更多
关键词 gas transport APPARENT gas permeability MODEL gas adsorption Surface diffusion Stress DEPENDENCE
下载PDF
Influence of soil density on gas permeability and water retention in soils amended with in-house produced biochar 被引量:2
4
作者 Ankit Garg He Huang +6 位作者 Weiling Cai Narala Gangadhara Reddy Peinan Chen Yifan Han Viroon Kamchoom Shubham Gaurav Hong-Hu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第3期593-602,共10页
Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention)of soil.However,variations in densities alter the properties of the soil ebiochar mix.Such ... Biochar has been used as an environment-friendly enhancer to improve the hydraulic properties(e.g.suction and water retention)of soil.However,variations in densities alter the properties of the soil ebiochar mix.Such density variations are observed in agriculture(loosely compacted)and engineering(densely compacted)applications.The influence of biochar amendment on gas permeability of soil has been barely investigated,especially for soil with different densities.The major objective of this study is to investigate the water retention capacity,and gas permeability of biochar-amended soil(BAS)with different biochar contents under varying degree of compaction(DOC)conditions.In-house produced novel biochar was mixed with the soil at different amendment rates(i.e.biochar contents of 0%,5%and 10%).All BAS samples were compacted at three DOCs(65%,80%and 95%)in polyvinyl chloride(PVC)tubes.Each soil column was subjected to dryingewetting cycles,during which soil suction,water content,and gas permeability were measured.A simplified theoretical framework for estimating the void ratio of BAS was proposed.The experimental results reveal that the addition of biochar significantly decreased gas permeability kg as compared with that of bare soil(BS).However,the addition of 5%biochar is found to be optimum in decreasing kg with an increase of DOC(i.e.k_(g,65%)>k_(g,80%)>k_(g,95%))at a relatively low suction range(<200 kPa)because both biochar and compaction treatment reduce the connected pores. 展开更多
关键词 BIOCHAR Degree of compaction(DOC) gas permeability Soil water retention Wettingedrying cycle
下载PDF
Determination of the Apparent Gas Permeability in a Macrocracked Concrete
5
作者 Pierre Rossi 《Engineering》 SCIE EI CAS 2022年第10期93-98,共6页
This paper reports on analysis of an expermental study that armed to determine the apparent gas permeability in cracked concrete.There is a lack of research on this topic in the international literature,due to the dif... This paper reports on analysis of an expermental study that armed to determine the apparent gas permeability in cracked concrete.There is a lack of research on this topic in the international literature,due to the difficulty of performing reliable experimental testing for gas permeability.The principal interest of this work is to present new and reliable experimental results.Analytical functions between the evolution of the apparent crack permeability and the apparent crack opening are also proposed.These functions appear to be relevant in consideration of Poiseuille theory. 展开更多
关键词 CONCRETE Macrocrack gas transfer permeability
下载PDF
Relation of Damage Variable and Gas Permeability Coefficient of Concrete under Stress
6
作者 TANG Guanbao YAO Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1481-1485,共5页
Compressive stress and tensile stress were applied to concrete specimens using test rigs designed by RILEM TC 246-TDC. Ultrasonic wave velocity and autoclam permeability system were used to characterize the damage var... Compressive stress and tensile stress were applied to concrete specimens using test rigs designed by RILEM TC 246-TDC. Ultrasonic wave velocity and autoclam permeability system were used to characterize the damage variable and gas permeability coefficient of concrete, respectively. The experimental results show that the strain value of concrete increases with the increasing of stress level and loading time. The damage variable and gas permeability coefficient of concrete under compressive stress decrease at first and increase after a threshold value between 0 and 0.6. When the concrete is under tensile load, the damage variable and gas permeability coefficient increase with tensile stress, with a significant increase from 0.3 to 0.6 tensile stress. There is a strong linear relationship between the damage variable and the gas permeability coefficient, suggesting both as good indicators to characterize the damage of concrete under stress. 展开更多
关键词 compression tension STRAIN damage variable gas permeability coefficient
下载PDF
Experimental study on gas permeability by adsorption under 3D-stress
7
作者 LONG Qing-ming WEN Guang-cai ZOU Yin-hui ZHAO Xu-sheng 《Journal of Coal Science & Engineering(China)》 2009年第2期148-151,共4页
Using self-developed gas-seepage experimental installation,under the sameeffective stress conditions,coal permeability experiments on different adsorption characteristicsof gases,different temperatures and different g... Using self-developed gas-seepage experimental installation,under the sameeffective stress conditions,coal permeability experiments on different adsorption characteristicsof gases,different temperatures and different gas adsorption contents were performed,and the influence law of adsorption on coal permeability was studied.At the sametime,experimental analogy showed clearly that gas drawing plucks the permeability variationlaw.The results show that adsorption has a major impact on coal permeability.Thegreater the adsorption,the more the gas adsorption capacity and the coal permeabilitybecomes smaller.Permeability becomes smaller along with confining of pressure andtemperature,and this is in accord with local practice results. 展开更多
关键词 gas ADSORPTION permeability PRESSURE temperature
下载PDF
High Temperature Gas Permeability Tester for Refractories and Its Application
8
作者 HU Piao SONG Yanyan +2 位作者 WANG Zhanmin LI Ruhang LI Xiaorui 《China's Refractories》 CAS 2020年第1期36-39,共4页
In this paper,an ideal structural model and a scientific and practical mathematical model of high temperature permeability testing technology were established based on the formula of gas permeability at room temperatu... In this paper,an ideal structural model and a scientific and practical mathematical model of high temperature permeability testing technology were established based on the formula of gas permeability at room temperature according to Darcy’s equation and Forchheimer equation and combined with the basic law of gas mechanics and the resistance loss of gas movement process at high temperatures.Through a gas heater,the safe heating of gas from room temperature to the test temperature was realized;the pressure sealing of high temperature permeability test technology was studied using high temperature resistant flexible material instead of silica gel material and combining preloading with system expansion and continuous loading.Based on the above research,a high temperature gas permeability tester for refractories has been developed and the test temperature can be up to 1000℃.The equipment was applied to research refractories,showing well using effects. 展开更多
关键词 high temperature gas permeability APPLICATION
下载PDF
EFFECT OF CHEMICAL STRUCTURE OF SULFOXIDE GRAFTED POLY (VINYL ALCOHOL) ON GAS PERMEABILITY
9
作者 江东林 张一烽 沈之荃 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1994年第2期132-136,共5页
The effects of chemical structure, i. e. side chain structure and their contents, on thepermeability of pure SO_2, N_2 and their mixture gases for the sulfoxide grafted poly (vinylalcohol) (RVSO-PVA) membranes have be... The effects of chemical structure, i. e. side chain structure and their contents, on thepermeability of pure SO_2, N_2 and their mixture gases for the sulfoxide grafted poly (vinylalcohol) (RVSO-PVA) membranes have been investigated:where R=Me, Et, Pr, t-Bu and Ph. It was notable that introduction of sulfoxide group intoPVA side chain greatly enhanced the permselectivity of sulfur dioxide. SO_2 permeability andseparation factor of these polymers increased markedly as the size of side chain increased. Thesulfoxide content of the polymer also played an important role in the pure and mixture gasespermeation. Some explanations have been made to interpret this unique gas separation behaviour. 展开更多
关键词 gas permeability Poly(vinylalcohol) Sulfoxide grafted Sulfur dioxide
下载PDF
Optimization of Gas-Flooding Fracturing Development in Ultra-Low Permeability Reservoirs
10
作者 Lifeng Liu Menghe Shi +3 位作者 Jianhui Wang Wendong Wang Yuliang Su Xinyu Zhuang 《Fluid Dynamics & Materials Processing》 EI 2024年第3期595-607,共13页
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f... Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained. 展开更多
关键词 Ultra-low permeability reservoir gas injection flooding component simulation fracture parameters intelligent optimization differential evolution
下载PDF
Revaluating coal permeability-gas pressure relation under various gas pressure differential conditions
11
作者 Chunguang Wang Hongxu Wang +5 位作者 Derek Elsworth Guanglei Cui Bingqian Li Meng Zhou Wenxin Li Jiyuan Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期203-216,共14页
Identifying changes in coal permeability with gas pressure and accurately codifying mean efective stresses in laboratory samples are crucial in predicting gas-fow behavior in coal reservoirs. Traditionally, coal perme... Identifying changes in coal permeability with gas pressure and accurately codifying mean efective stresses in laboratory samples are crucial in predicting gas-fow behavior in coal reservoirs. Traditionally, coal permeability to gas is assessed using the steady-state method, where the equivalent gas pressure in the coal is indexed to the average of upstream and downstream pressures of the coal, while ignoring the nonlinear gas pressure gradient along the gas fow path. For the fow of a compressible gas, the traditional method consistently underestimates the length/volume-averaged pressure and overestimates mean efective stress. The higher the pressure diferential within the sample, the greater the error between the true mean pressure for a compressible fuid and that assumed as the average between upstream and downstream pressures under typical reservoir conditions. A correction coefcient for the compressible fuid pressure asymptotes to approximately 1.3%, representing that the error in mean pressure and efective stress can be on the order of approximately 30%, particularly for highly pressure-sensitive permeabilities and compressibilities, further amplifying errors in evaluated reservoir properties. We utilized this volume-averaged pressure and efective stress to correct permeability and compressibility data reported in the literature. Both the corrected initial permeability and the corrected pore compressibility were found to be smaller than the uncorrected values, due to the underestimation of the true mean fuid pressure, resulting in an overestimation of reservoir permeability if not corrected. The correction coefcient for the initial permeability ranges from 0.6 to 0.1 (reservoir values are only approximately 40% to 90% of laboratory values), while the correction coefcient for pore compressibility remains at approximately 0.75 (reservoir values are only approximately 25% of laboratory value). Errors between the uncorrected and corrected parameters are quantifed under various factors, such as confning pressure, gas sorption, and temperature. By analyzing the evolutions of the initial permeability and pore compressibility, the coupling mechanisms of mechanical compression, adsorption swelling, and thermal expansion on the pore structure of the coal can be interpreted. These fndings can provide insights that are useful for assessing the sensitivity of coal permeability to gas pressure as truly representative of reservoir conditions. 展开更多
关键词 gas compressibility Coal permeability Pressure diferential Mean gas pressure
下载PDF
Permeability evolution and gas flow in wet coal under non-equilibrium state:Considering both water swelling and process-based gas swelling
12
作者 Zhiyong Xiao Gang Wang +3 位作者 Changsheng Wang Yujing Jiang Feng Jiang Chengcheng Zheng 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第5期585-599,共15页
Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of d... Accurate knowledge of gas flow within the reservoir and related controlling factors will be important for enhancing the production of coal bed methane.At present,most studies focused on the permeability evolution of dry coal under gas adsorption equilibrium,gas flow and gas diffusion within wet coal under the generally non-equilibrium state are often ignored in the process of gas recovery.In this study,an improved apparent permeability model is proposed which accommodates the water and gas adsorption,stress dependence,water film thickness and gas flow regimes.In the process of modeling,the water adsorption is only affected by water content while the gas adsorption is time and water content dependent;based on poroelastic mechanics,the effective fracture aperture and effective pore radius are derived;and then the variation in water film thickness for different pore types under the effect of water content,stress and adsorption swelling are modeled;the flow regimes are considered based on Beskok’s model.Further,after validation with experimental data,the proposed model was applied to numerical simulations to investigate the evolution of permeability-related factors under the effect of different water contents.The gas flow in wet coal under the non-equilibrium state is explicitly revealed. 展开更多
关键词 gas flow Apparent permeability Water film ADSORPTION Non-equilibrium state
下载PDF
An Investigation into the Compressive Strength,Permeability and Microstructure of Quartzite-Rock-Sand Mortar
13
作者 Wei Chen Wuwen Liu Yue Liang 《Fluid Dynamics & Materials Processing》 EI 2024年第4期859-872,共14页
River sand is an essential component used as a fine aggregate in mortar and concrete.Due to unrestrained exploitation,river sand resources are gradually being exhausted.This requires alternative solutions.This study d... River sand is an essential component used as a fine aggregate in mortar and concrete.Due to unrestrained exploitation,river sand resources are gradually being exhausted.This requires alternative solutions.This study deals with the properties of cement mortar containing different levels of manufactured sand(MS)based on quartzite,used to replace river sand.The river sand was replaced at 20%,40%,60%and 80%with MS(by weight or volume).The mechanical properties,transfer properties,and microstructure were examined and compared to a control group to study the impact of the replacement level.The results indicate that the compressive strength can be improved by increasing such a level.The strength was improved by 35.1%and 45.5%over that of the control mortar at replacement levels of 60%and 80%,respectively.Although there was a weak link between porosity and gas permeability in the mortars with manufactured sand,the gas permeability decreased with growing the replacement level.The microstructure of the MS mortar was denser,and the cement paste had fewer microcracks with increasing the replacement level. 展开更多
关键词 Manufactured sand QUARTZITE compressive strength gas permeability MICROSTRUCTURE
下载PDF
Research advances in enhanced coal seam gas extraction by controllable shock wave fracturing
14
作者 Chaojun Fan Hao Sun +6 位作者 Sheng Li Lei Yang Bin Xiao Zhenhua Yang Mingkun Luo Xiaofeng Jiang Lijun Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期1-31,共31页
With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as ... With the continuous increase of mining in depth,the gas extraction faces the challenges of low permeability,great ground stress,high temperature and large gas pressure in coal seam.The controllable shock wave(CSW),as a new method for enhancing permeability of coal seam to improve gas extraction,features in the advantages of high efficiency,eco-friendly,and low cost.In order to better utilize the CSW into gas extraction in coal mine,the mechanism and feasibility of CSW enhanced extraction need to be studied.In this paper,the basic principles,the experimental tests,the mathematical models,and the on-site tests of CSW fracturing coal seams are reviewed,thereby its future research directions are provided.Based on the different media between electrodes,the CSW can be divided into three categories:hydraulic effect,wire explosion and excitation of energetic materials by detonating wire.During the process of propagation and attenuation of the high-energy shock wave in coal,the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam.The stronger the strength of the CSW is,the more cracks created in the coal is,and the greater the length,width and area of the cracks being.The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength,but excessive shock frequency will also damage the coal structure,resulting in the limited effect of the enhanced gas extraction.Under the influence of ground stress,the crack propagation in coal seam will be restrained.The difference of horizontal principal stress has a significant impact on the shape,propagation direction and connectivity of the CSW induced cracks.The permeability enhancement effect of CSW is affected by the breakage degree of coal seam.The shock wave is absorbed by the broken coal,which may hinder the propagation of CSW,resulting in a poor effect of permeability enhancement.When arranging two adjacent boreholes for CSW permeability enhancement test,the spacing of boreholes should not be too close,which may lead to negative pressure mutual pulling in the early stage of drainage.At present,the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated. 展开更多
关键词 Controllable shock wave permeability enhancement gas extraction Basic principle Experimental test Mathematical models On-site test
下载PDF
Adaptability of Development Methods for Offshore Gas Cap Edge Water Reservoirs under Different Permeability Levels
15
作者 Shaopeng Wang Pengfei Mu +2 位作者 Jie Tan Rong Fu Mo Zhang 《Open Journal of Applied Sciences》 2023年第7期1029-1038,共10页
The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap... The BZ 34-1 oilfield is a typical gas cap edge water reservoir in the Bohai oilfield. The main characteristics of the oilfield were multi-phase sand body stacking and the sand body was composed of three parts: gas cap, oil reservoir, and edge water. The actual production site results show that the permeability difference of multi-layer sand bodies has a serious impact on the development effect. This article establishes a typical reservoir model numerical model based on the total recovery degree of the reservoir and the recovery degree of each layer, and analyzes the impact of permeability gradient. As the permeability gradient increases, the total recovery degree of all four well patterns decreases, and the total recovery degree gradually decreases. The recovery degree of low permeability layers gradually decreases, and the recovery degree of high permeability layers gradually increases. As the permeability gradient increases, the degree of recovery gradually decreases under different water contents. As the permeability gradient increases, the reduction rate of remaining oil saturation in low permeability layers is slower, while the reduction rate of remaining oil saturation in high permeability layers was faster. By analyzing the impact of permeability gradient on the development effect of oil fields, we could further deepen our understanding of gas cap edge water reservoirs and guide the development of this type of oil field. 展开更多
关键词 Bohai Sea gas Cap and Bottom Water Reservoir permeability Gradient Well Pattern Recovery Degree
下载PDF
Numerical study on gas production via a horizontal well from hydrate reservoirs with different slope angles in the South China Sea
16
作者 Tingting Luo Jianlin Song +5 位作者 Xiang Sun Fanbao Cheng Madhusudhan Bangalore Narasimha Murthy Yulu Chen Yi Zhao Yongchen Song 《Deep Underground Science and Engineering》 2024年第2期171-181,共11页
It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China... It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs. 展开更多
关键词 effective stress low‐permeability reservoirs natural gas hydrate production numerical simulation SETTLEMENT slope angle the South China
下载PDF
Test of the Relative Permeability Curve of a Gas and Oil Condensate System and its Effect on the Recovery of Oil and Gas 被引量:5
17
作者 郭平 李海平 +2 位作者 宋文杰 江同文 王小强 《Petroleum Science》 SCIE CAS CSCD 2004年第4期36-41,65,共7页
The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow ... The relative permeability curve has been measured with simulation oil (refined oil) and gas (nitrogen or air) at room temperature and a lowpressure, both of which are very important parameters for depicting the flow of fluid through porous media in a hydrocarbon reservoir. This basic measurement is often applied in exploitation evaluation, but the underground conditions with high temperature and pressure, and the phase equilibrium of oil and gas, are not taken into consideration when the relative permeability curve is tested. There is an important theoretical and practical sense in testing the diphase relative permeability curve of the equilibrium of oil and gas under the conditions of high temperature and pressure. The test method for the relative permeability curve is proposed in this paper. The relative permeability of the equilibrium of oil and gas and the standard one are tested in two fluids, and the differences between these two methods are stated. The research results can be applied to the simulation and prediction of CVD in long cores and then the phenomenon can better explain that the recovery of condensate gas rich in condensate oil is higher than that of CVD test in PVT. Meanwhile, the research shows that the relative permeability curve of equilibrium oil and gas is sensitive to the rate of exploitation, and the viewpoint proves that an improved gas recovery rate can properly increase the recovery of condensate oil. 展开更多
关键词 Equilibrium condensate oil and gas condensate gas relative permeability curve long cores condensate oil recovery
下载PDF
Effects of coal damage on permeability and gas drainage performance 被引量:7
18
作者 Zheng Chunshan Mehmet Kizil +1 位作者 Chen Zhongwei Saiied Aminossadati 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期783-786,共4页
Coal permeability is a measure of the ability for fluids to flow through coal structures. It is one of the most important parameters affecting the gas drainage performance in underground coal mines. Despite the extens... Coal permeability is a measure of the ability for fluids to flow through coal structures. It is one of the most important parameters affecting the gas drainage performance in underground coal mines. Despite the extensive research conducted on coal permeability, few studies have considered the effect of coal damage on permeability. This has resulted in unreliable permeability evaluation and prediction. The aim of this study is to investigate the effect of coal damage on permeability and gas drainage performance. The Cui-Bustin permeability model was improved by taking into account the impact of coal damage on permeability. The key damage coefficient of the improved permeability model is determined based on the published permeability data. A finite-element numerical simulation was then developed based on the improved permeability model to investigate the damage areas and the permeability distribution around roadway. Results showed that the tensile failure occurs mainly on the upper and lower sides of the roadway while the shear failure symmetrically occurs on the left and right sides. With the increase in the friction angle value, the damage area becomes small. A good agreement was obtained between the results of the improved permeability model(c = 3) and the published permeability data. This indicated a more accurate permeability prediction by the improved permeability model. It is expected that the findings of this study could provide guidance for in-seam gas drainage borehole design and sealing, in order to enhance the gas drainage performance and reduce gas emissions into underground roadways. 展开更多
关键词 COAL permeability COAL DAMAGE Improved Cui-Bustin permeability model gas drainage NUMERICAL modelling
下载PDF
Study on "fracturing-sealing" integration technology based on high-energy gas fracturing in single seam with high gas and low air permeability 被引量:10
19
作者 Zhang Chao Lin Baiquan +2 位作者 Zhou Yan Zhai Cheng Zhu Chuanjie 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期841-846,共6页
To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305... To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305 Tunliu mine.In the experiment,coal seams can achieve the aim of antireflection effect through the following process:First,project main cracks with the high energy pulse jet.Second,break the coal body by delaying the propellant blasting.Next,destroy the dense structure of the hard coal body,and form loose slit rings around the holes.Finally,seal the boreholes with the"strong-weak-strong"pressurized sealing technology.The results are as follows:The average concentration of gas extraction increases from8.3%to 39.5%.The average discharge of gas extraction increases from 0.02 to 0.10 m^3/min.The tunneling speeds up from 49.5 to 130 m/month.And the permeability of coal seams improves nearly tenfold.Under the same conditions,the technology is much more efficient in depressurization and antireflection than common methods.In other words,it will provide a more effective way for the gas extraction of single seam with high gas and low air permeability. 展开更多
关键词 Coal gas High-energy gas fracturing "Fracturing-sealing" integration Pressure relief and permeability increase gas extraction
下载PDF
Seepage law and permeability calculation of coal gas based on Klinkenberg effect 被引量:6
20
作者 王登科 魏建平 +2 位作者 付启超 刘勇 夏玉玲 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1973-1978,共6页
Focused on the Klinkenberg effect on gas seepage, the independently developed triaxial experimental system of gas seepage was applied to conduct research on the seepage characteristics of coal seam gas. By means of ex... Focused on the Klinkenberg effect on gas seepage, the independently developed triaxial experimental system of gas seepage was applied to conduct research on the seepage characteristics of coal seam gas. By means of experimental data analysis and theoretical derivation, a calculation method of coal seam gas permeability was proposed, which synthesized the respective influences of gas dynamic viscosity, compressibility factor and Klinkenberg effect. The study results show that the Klinkenberg effect has a significant influence on the coal seam gas seepage, the permeability estimated with the method considering the Klinkenberg effect is correct, and this permeability can fully reflect the true seepage state of the gas. For the gas around the standard conditions, the influences of dynamic viscosity and compressibility factor on the permeability may be ignored. For the gas deviating far away from the standard conditions, the influences of dynamic viscosity and compressibility factor on the permeability must be considered. The research results have certain guiding significance in forming a correct understanding of the Klinkenberg effect and selecting a more accurate calculation method for the permeability of coal containing gas. 展开更多
关键词 coalbed gas seepage law Klinkenberg effect gas adsorption-desorption permeability
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部