Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactiv...Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.展开更多
BACKGROUND Hepatic arterial infusion chemotherapy(HAIC)has been proven to be an ideal choice for treating unresectable hepatocellular carcinoma(uHCC).HAIC-based treatment showed great potential for treating uHCC.Howev...BACKGROUND Hepatic arterial infusion chemotherapy(HAIC)has been proven to be an ideal choice for treating unresectable hepatocellular carcinoma(uHCC).HAIC-based treatment showed great potential for treating uHCC.However,large-scale studies on HAIC-based treatments and meta-analyses of first-line treatments for uHCC are lacking.AIM To investigate better first-line treatment options for uHCC and to assess the safety and efficacy of HAIC combined with angiogenesis inhibitors,programmed cell death of protein 1(PD-1)and its ligand(PD-L1)blockers(triple therapy)under real-world conditions.METHODS Several electronic databases were searched to identify eligible randomized controlled trials for this meta-analysis.Study-level pooled analyses of hazard ratios(HRs)and odds ratios(ORs)were performed.This was a retrospective single-center study involving 442 patients with uHCC who received triple therapy or angiogenesis inhibitors plus PD-1/PD-L1 blockades(AIPB)at Sun Yat-sen University Cancer Center from January 2018 to April 2023.Propensity score matching(PSM)was performed to balance the bias between the groups.The Kaplan-Meier method and cox regression were used to analyse the survival data,and the log-rank test was used to compare the suvival time between the groups.RESULTS A total of 13 randomized controlled trials were included.HAIC alone and in combination with sorafenib were found to be effective treatments(P values for ORs:HAIC,0.95;for HRs:HAIC+sorafenib,0.04).After PSM,176 HCC patients were included in the analysis.The triple therapy group(n=88)had a longer median overall survival than the AIPB group(n=88)(31.6 months vs 14.6 months,P<0.001)and a greater incidence of adverse events(94.3%vs 75.4%,P<0.001).CONCLUSION This meta-analysis suggests that HAIC-based treatments are likely to be the best choice for uHCC.Our findings confirm that triple therapy is more effective for uHCC patients than AIPB.展开更多
Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the pr...Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the prodrug of epigallocatechin gallate(ProEGCG)exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate(EGCG).However,their direct binding targets and underlying mechanisms for the differential effects remain unknown.In this study,we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis.Additionally,1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin(MTDH)and PX domain containing serine/threonine kinase-like(PXK)as novel binding targets of EGCG and ProEGCG,respectively.Computational simulation and BioLayer interferometry were used to confirm their binding affinity.Our results showed that MTDH-EGCG inhibited protein kinase B(Akt)-mediated angiogenesis,while PXK-ProEGCG inhibited epidermal growth factor(EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor(HIF-1a)/vascular endothelial growth factor(VEGF)pathway.In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways.Moreover,our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.展开更多
Atherosclerosis remains a great threat to human health worldwide.Previous studies found that tetramethylpyrazine(TMP)and paeonifl orin(PF)combination(TMP-PF)exerts anti-atherosclerotic effects in vitro.However,whether...Atherosclerosis remains a great threat to human health worldwide.Previous studies found that tetramethylpyrazine(TMP)and paeonifl orin(PF)combination(TMP-PF)exerts anti-atherosclerotic effects in vitro.However,whether TMP-PF improves atherosclerosis in vivo needs further exploration.The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE^(-/-)mice and explore the related molecule mechanisms.Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels,suppressed vascular endothelial growth factor receptor 2(VEGFR2)and nuclear receptor subfamily 4 group A member 1(NR4A1)expression in aortic tissues,inhibited plaque angiogenesis,reduced plaque areas,and alleviated atherosclerosis in ApoE^(-/-)mice.Also,TMP-PF exhibited a better modulation effect than TMP or PF alone.However,NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF.In conclusion,TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway,indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.展开更多
Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer tre...Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer treatments, via exacerbation of tumor hypoxia, decreased effective drug concentrations within tumors, and immune-related mechanisms. Antiangiogenic therapy can counteract these breast cancer resistance factors by promoting tumor vascular normalization. The combination of antiangiogenic therapy with chemotherapy, targeted therapy, or immunotherapy has emerged as a promising approach for overcoming drug resistance in breast cancer. This review examines the mechanisms associated with angiogenesis and the interactions among tumor angiogenesis, the hypoxic tumor microenvironment, drug distribution, and immune mechanisms in breast cancer. Furthermore, this review provides a comprehensive summary of specific antiangiogenic drugs, and relevant studies assessing the reversal of drug resistance in breast cancer. The potential mechanisms underlying these interventions are discussed, and prospects for the clinical application of antiangiogenic therapy to overcome breast cancer treatment resistance are highlighted.展开更多
Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavio...Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways.展开更多
Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was ...Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was conducted using the precipitation method.Then,the minimum inhibitory concentration(MIC),minimum bactericidal concentration(MBC),and minimum biofilm inhibition concentration 50%(MBIC50)of ZNPs against Staphylococcus aureus(S.aureus)and Pseudomonas aeruginosa(P.aeruginosa)were evaluated.The effects of ZNPs on the gene expressions of Staphylococcus spp.[intracellular adhesion A(icaA)and D(icaD)]and P.aeruginosa(rhlI and rhlR)were investigated using quantitative real-time PCR.In addition,the effects of ZNPs on wound healing,angiogenesis,and anti-inflammatory markers were assessed.Results:The green-synthesized ZNPs demonstrated significant antimicrobial efficacy against S.aureus and P.aeruginosa.The biofilm formation in S.aureus and P.aeruginosa was also inhibited by ZNPs with MBIC50 values of 3.30μg/mL and 2.08μg/mL,respectively.Additionally,ZNPs downregulated the expression of biofilm-related genes icaA,icaD,rhlI,and rhlR in the tested bacteria.They also demonstrated promising in vitro wound healing effects by promoting fibroblast cell proliferation and wound closure in a dose-dependent manner.A significant increase in the expression of HLA-G5 and VEGF-A genes as well as a marked decrease in the expression of NF-κB,IL-1β,and TNF-αgenes were observed in cells treated with ZNPs compared to the control group(P<0.05).Conclusions:ZNPs display promising antibacterial effects against S.aureus and P.aeruginosa and wound-healing effects by inhibiting biofilm formation,inducing angiogenesis,and reducing inflammation.However,further studies must be conducted to specify the accurate mechanisms of action and toxicity of ZNPs.展开更多
AIM:To observe the effect of ghrelin,a growth hormonereleasing peptide,on retinal angiogenesis in vitro under high glucose(HG)stress and to explore the possible mechanism of autophagy.METHODS:Human retinal microvascul...AIM:To observe the effect of ghrelin,a growth hormonereleasing peptide,on retinal angiogenesis in vitro under high glucose(HG)stress and to explore the possible mechanism of autophagy.METHODS:Human retinal microvascular endothelial cells(HRMECs)were treated with high concentration of glucose alone or in combination with ghrelin.The cell migration,tube formation and the expression of the autophagy-related proteins LC3-II/I,Beclin-1,p62,phosphorylated AKT(p-AKT)/AKT and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR were detected.Then,to clarify the correlation between ghrelin effect and autophagy,AKT inhibitor VIII was adopted to treat HRMECs,and cell migration,tube formation as well as the protein expressions of LC3-II/I,Beclin-1 and p62 were observed.RESULTS:Under HG stress,ghrelin inhibited migration and tube formation of HRMECs.Ghrelin inhibited the increases in the protein levels of LC3-II/I,Beclin-1 and the decreases in the protein levels of p62,p-AKT/AKT and p-mTOR/mTOR induced by HG stress.Moreover,under the action of AKT/mTOR pathway inhibitors,the effects of ghrelin on migration and tube formation were both reduced.In addition,the expression of LC3-II/I and Beclin-1 were significantly up-regulated and the expression of p62 was down-regulated.CONCLUSION:Retinal angiogenesis under in vitro HG stress can be inhibited by ghrelin through activating AKT/mTOR pathway to inhibit autophagy.展开更多
A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged ...A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged studies of angiogenesis in OSF. Here, we found that the expression of thrombospondin 1 (THBS1), an endogenous angiostatic protein, was elevated in the stroma of tissues with OSF. Using a fibroblast-attached organoid (FAO) model, the overexpression of THBS1 in OSF was stably recapitulated in vitro. In the FAO model,treatment with arecoline, a major pathogenic component in areca nuts, enhanced the secretion of transforming growth factor (TGF)-β1 by epithelial cells, which then promoted the expression of THBS1 in fibroblasts. Furthermore, human umbilical vein endothelial cells (HUVECs)were incorporated into the FAO to mimic the vascularized component. Overexpression of THBS1 in fibroblasts drastically suppressed the sprouting ability of endothelial cells in vascularized FAOs (v FAOs). Consistently, treatment with arecoline reduced the expression of CD31in v FAOs, and this effect was attenuated when the endothelial cells were preincubated with neutralizing antibody of CD36, a receptor of THBS1. Finally, in an arecoline-induced rat OSF model, THBS1 inhibition alleviated collagen deposition and the decline in vascularity in vivo. Overall, we exploited an assembled organoid model to study OSF pathogenesis and provide a rationale for targeting THBS1.展开更多
Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose a...Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose and oxygen through its vascular networks.Brain vasculature consists of highly divergent blood vessel branches,giving rise to a dense network of capillaries that supply blood to all cells across the brain.This elaborated vascular network is thought to develop via angiogenesis,a process in which new blood vessels grow from pre-existing vasculature.Brain capillaries exhibit organotypic features distinct from other tissues and are formed primarily by two major endothelial cell(EC)types:those that form the semi-permeable blood-brain barrier(BBB)and those that develop highly permeable pores known as fenestrae(Matsuoka et al.,2022).The structural and functional differences between BBB and fenestrated vascular ECs represent a fundamental feature of brain vasculature and form the foundation for both brain function and homeostasis.展开更多
AIM:To investigate the effect ofβ-alanine(BA)on laserinduced choroidal neovascularization(CNV)mice models.METHODS:Laser-induced CNV mice models were established,and BA was administrated for one week and two weeks in ...AIM:To investigate the effect ofβ-alanine(BA)on laserinduced choroidal neovascularization(CNV)mice models.METHODS:Laser-induced CNV mice models were established,and BA was administrated for one week and two weeks in advance,separately.Furthermore,retinal pigment epithelium(RPE)-choroid flat mounts were separated,and immunohistochemical staining was performed.The laser-induced CNV lesion areas were measured and compared.In addition,liver and kidney morphologies were observed to identify potential hepatorenal toxicity.RESULTS:Enlarged CNV lesion areas were observed in the BA treated group.No significant differences were observed in the liver and kidney sections between groups.CONCLUSION:BA treatment increase CNV lesion areas,suggesting the detrimental effects of BA as a nutritional supplement in age-related macular degeneration(AMD)population.展开更多
BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,neces...BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.展开更多
Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-associated death worldwide.Angiogenesis,the process of formation of new blood vessels,is required for cancer cells to obtain nutrients and oxygen.HCC ...Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-associated death worldwide.Angiogenesis,the process of formation of new blood vessels,is required for cancer cells to obtain nutrients and oxygen.HCC is a typical hypervascular solid tumor with an aberrant vascular network and angiogenesis that contribute to its growth,progression,invasion,and metastasis.Current anti-angiogenic therapies target mainly tyrosine kinases,vascular endothelial growth factor receptor(VEGFR),and plateletderived growth factor receptor(PDGFR),and are considered effective strategies for HCC,particularly advanced HCC.However,because the survival benefits conferred by these anti-angiogenic therapies are modest,new anti-angiogenic targets must be identified.Several recent studies have determined the underlying molecular mechanisms,including pro-angiogenic factors secreted by HCC cells,the tumor microenvironment,and cancer stem cells.In this review,we summarize the roles of pro-angiogenic factors;the involvement of endothelial cells,hepatic stellate cells,tumor-associated macrophages,and tumor-associated neutrophils present in the tumor microenvironment;and the regulatory influence of cancer stem cells on angiogenesis in HCC.Furthermore,we discuss some of the clinically approved anti-angiogenic therapies and potential novel therapeutic targets for angiogenesis in HCC.A better understanding of the mechanisms underlying angiogenesis may lead to the development of more optimized anti-angiogenic treatment modalities for HCC.展开更多
Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promo...Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promote angiogenesis in hypoxia and traumatic brain injury model,while its effect on ischemic stroke remains elusive.In this study,we found that overexpression of miR-181b in brain microvascular endothelial cells subjected to oxygen-glucose deprivation in vitro restored cell prolife ration and enhanced angiogenesis.In rat models of focal cerebral ischemia,ove rexpression of miR-181b reduced infarction volume,promoted angiogenesis in ischemic penumbra,and improved neurological function.We further investigated the molecular mechanism by which miR-181b participates in angiogenesis after ischemic stroke and found that miR-181b directly bound to the 3’-UTR of phosphatase and tensin homolog(PTEN) mRNA to induce PTEN downregulation,leading to activation of the protein kinase B(Akt) pathway,upregulated expression of vascular endothelial growth facto rs,down-regulated expression of endostatin,and promoted angiogenesis.Taken togethe r,these results indicate that exogenous miR-181b exhibits neuroprotective effects on ischemic stro ke through activating the PTEN/Akt signal pathway and promoting angiogenesis.展开更多
Large bone defect regeneration has always been recognized as a challenging clinical problem due to the difficulty of revascularization.Conventional treatments exhibit certain inherent disadvantages(e.g.,secondary inju...Large bone defect regeneration has always been recognized as a challenging clinical problem due to the difficulty of revascularization.Conventional treatments exhibit certain inherent disadvantages(e.g.,secondary injury,immunization,and potential infections).However,three-dimensional(3D)printing technology as an emerging field can serve as an effective approach to achieve satisfactory revascularization while making up for the above limitations.A wide variety of methods can be used to facilitate blood supply during the design of a 3D-printed scaffold.Importantly,the scaffold structure lays a foundation for the entire printing object;any method to promote angiogenesis can be effective only if it is based on well-designed scaffolds.In this review,different designs related to angiogenesis are summarized by collecting the literature from recent years.The 3D-printed scaffolds are classified into four major categories and discussed in detail,from elementary porous scaffolds to the most advanced bone-like scaffolds.Finally,structural design suggestions to achieve rapid angiogenesis are proposed by analyzing the above architectures.This review can provide a reference for organizations or individual academics to achieve improved bone defect repair and regeneration using 3D printing.展开更多
Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of a...Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury.展开更多
Objective:The main characteristics of diabetic nephropathy(DN)at the early stage are abnormal angiogenesis of glomerular endothelial cells(GECs)and macrophage infiltration.Galectin-3 plays a pivotal role in the pathog...Objective:The main characteristics of diabetic nephropathy(DN)at the early stage are abnormal angiogenesis of glomerular endothelial cells(GECs)and macrophage infiltration.Galectin-3 plays a pivotal role in the pathogenesis of DN via binding with its ligand,advanced glycation end products(AGEs).Catalpol,an iridoid glucoside extracted from Rehmannia glutinosa,has been found to ameliorate vascular inflammation,reduce endothelial permeability,and protect against endothelial damage in diabetic milieu.However,little is known about whether catalpol could exert an anti-angiogenesis and anti-inflammation effect induced by AGEs.Methods:Mouse GECs(mGECs)and RAW 264.7 macrophages were treated with different concentrations of AGEs(0,50,100,200 and 400μg/mL)for different time(0,6,12,24 and 48 h)to determine the optimal concentration of AGEs and treatment time.Cells were treated with catalpol(10μmol/L),GB1107(1μmol/L,galectin-3 inhibitor),PX-478(50μmol/L,HIF-1αinhibitor),adenovirus-green fluorescent protein(Ad-GFP)[3×10^(7)plaque-forming unit(PFU)/mL]or Ad-galectin-3-GFP(2×10^(8)PFU/mL),which was followed by incubation with 50μg/mL AGEs.The levels of galectin-3,vascular endothelial growth factor A(VEGFA)and pro-angiogenic factors angiopoietin-1(Ang-1),angiopoietin-2(Ang-2),tunica interna endothelial cell kinase-2(Tie-2)were detected by enzyme-linked immunosorbent assay(ELISA).Cell counting kit-8(CCK-8)assay was used to evaluate the proliferation of these cells.The expression levels of galectin-3,vascular endothelial growth factor receptor 1(VEGFR1),VEGFR2,and hypoxia-inducible factor-1α(HIF-1α)in mGECs and those of galectin-3 and HIF-1αin RAW 264.7 macrophages were detected by Western blotting and immunofluorescence(IF)staining.The rat DN model was established.Catalpol(100 mg/kg)or GB1107(10 mg/kg)was administered intragastrically once a day for 12 weeks.Ad-galectin-3-GFP(6×10^(7)PFU/mL,0.5 mL)or Ad-GFP(6×10^(6)PFU/mL,0.5 mL)was injected into the tail vein of rats 48 h before the sacrifice of the animals.The expression of galectin-3,VEGFR1,.VEGFR2,and HIF-1αin renal cortices was analyzed by Western blotting.The expression of galectin-3,F4/80(a macrophage biomarker),and CD34(an endothelium biomarker)in renal cortices was detected by IF staining,and collagen accumulation by Masson staining.Results:The expression levels of galectin-3 and VEGFA were significantly higher in mGECs and RAW 264.7 macrophages treated with 50μg/mL AGEs for 48 h than those in untreated cells.Catalpol and GB1107 could block the AGEs-induced proliferation of mGECs and RAW 264.7 macrophages.Over-expression of galectin-3 was found to reduce the inhibitory effect of catalpol on the proliferation of cells.Catalpol could significantly decrease the levels of Ang-1,Ang-2 and Tie-2 released by AGEs-treated mGECs,which could be reversed by over-expression of galectin-3.Catalpol could significantly inhibit AGEs-induced expression of galectin-3,HIF-1α,VEGFR1,and VEGFR2 in mGECs.The inhibitory effect of catalpol on galectin-3 in AGEs-treated mGECs was impaired by PX-478.Moreover,catalpol attenuated the AGEs-activated HIF-1α/galectin-3 pathway in RAW 264.7 macrophages,which was weakened by PX-478.Additionally,catalpol significantly inhibited the expression of galectin-3,macrophage infiltration,collagen accumulation,and angiogenesis in the kidney of diabetic rats.Over-expression of galectin-3 could antagonize these inhibitory effects of catalpol.Conclusion:Catalpol prevented the angiogenesis of mGECs and macrophage proliferation via inhibiting galectin-3.It could prevent the progression of diabetes-induced renal damage.展开更多
BACKGROUND As a novel endogenous anti-angiogenic molecule, vasohibin 1(VASH1) is not only expressed in tumor stroma, but also in tumor tissue. Moreover, studies have shown that VASH1 may be a prognostic marker in colo...BACKGROUND As a novel endogenous anti-angiogenic molecule, vasohibin 1(VASH1) is not only expressed in tumor stroma, but also in tumor tissue. Moreover, studies have shown that VASH1 may be a prognostic marker in colorectal cancer(CRC). Knockdown of VASH1 enhanced transforming growth factor-β1(TGF-β1)/Smad3 pathway activity and type Ⅰ/Ⅲ collagen production. Our previous findings suggest that ELL-associated factor 2(EAF2) may play a tumor suppressor and protective role in the development and progression of CRC by regulating signal transducer and activator of transcription 3(STAT3)/TGF-β1 signaling pathway. However, the functional role and mechanism of VASH1-mediated TGF-β1 related pathway in CRC has not been elucidated.AIM To investigate the expression of VASH1 in CRC and its correlation with the expression of EAF2. Furthermore, we studied the functional role and mechanism of VASH1 involved in the regulation and protection of EAF2 in CRC cells in vitro.METHODS We collected colorectal adenocarcinoma and corresponding adjacent tissues to investigate the clinical expression of EAF2 protein and VASH1 protein in patients with advanced CRC. Following, we investigated the effect and mechanism of EAF2 and VASH1 on the invasion, migration and angiogenesis of CRC cells in vitro using plasmid transfection.RESULTS Our findings indicated that EAF2 was down-regulated and VASH1 was upregulated in advanced CRC tissue compared to normal colorectal tissue. KaplanMeier survival analysis showed that the higher EAF2 Level group and the lower VASH1 Level group had a higher survival rate. Overexpression of EAF2 might inhibit the activity of STAT3/TGF-β1 pathway by up-regulating the expression of VASH1, and then weaken the invasion, migration and angiogenesis of CRC cells.CONCLUSION This study suggests that EAF2 and VASH1 may serve as new diagnostic and prognostic markers for CRC, and provide a clinical basis for exploring new biomarkers for CRC. This study complements the mechanism of EAF2 in CRC cells, enriches the role and mechanism of CRC cellderived VASH1, and provides a new possible subtype of CRC as a therapeutic target of STAT3/TGF-β1 pathway.展开更多
Background:Pathological angiogenesis and blood–brain barrier damage may play an important role in Alzheimer's disease(AD).ACE2 is mainly expressed on the surface of endothelial cells in brain.Recent studies have ...Background:Pathological angiogenesis and blood–brain barrier damage may play an important role in Alzheimer's disease(AD).ACE2 is mainly expressed on the surface of endothelial cells in brain.Recent studies have shown that the expression of ACE2 in AD is reduced,but its role in AD is still unclear.Method:We induced AD damage in endothelial cells using Aβ25-35 and overexpressed ACE2 in bEend.3 cells through lentiviral transfection.We detected the effect of Aβ25-35 on cell viability using the CCK-8 assay and examined the effect of overexpressing ACE2 on angiogenesis using an angiogenesis assay.We used western blot and cell immunofluorescence to detect changes in the expression of the VEGF/VEGFR2 pathway,tight junction protein,and NF-κB pathway.Results:Aβ25-35 treatment significantly decreased the expression of ACE2 and reduced cell viability.ACE2 overexpression(1)reduced the number of branches and junctions in tube formation,(2)inhibited the activation of the VEGF/VEGFR2 pathway induced by Aβ25-35,(3)increased the expression of TJPs,including ZO-1 and claudin-5,and(4)restored Aβ25-35-induced activation of the NF-κB pathway.Conclusion:Overexpression of ACE2 can improve pathological angiogenesis and blood–brain barrier damage in AD models in vitro by inhibiting NF-κB/VEGF/VEGFR2 pathway activity.ACE2 may therefore represent a therapeutic target for endothelial cell dysfunction in AD.展开更多
BACKGROUND The development of new vasculatures(angiogenesis)is indispensable in supplying oxygen and nutrients to fuel tumor growth.Epigenetic dysregulation in the tumor vasculature is critical to colorectal cancer(CR...BACKGROUND The development of new vasculatures(angiogenesis)is indispensable in supplying oxygen and nutrients to fuel tumor growth.Epigenetic dysregulation in the tumor vasculature is critical to colorectal cancer(CRC)progression.Sirtuin(SIRT)enzymes are highly expressed in blood vessels.BZD9L1 benzimidazole analogue is a SIRT 1 and 2 inhibitor with reported anticancer activities in CRC.However,its role has yet to be explored in CRC tumor angiogenesis.AIM To investigate the anti-angiogenic potential of BZD9L1 on endothelial cells(EC)in vitro,ex vivo and in HCT116 CRC xenograft in vivo models.METHODS EA.hy926 EC were treated with half inhibitory concentration(IC50)(2.5μM),IC50(5.0μM),and double IC50(10.0μM)of BZD9L1 and assessed for cell proliferation,adhesion and SIRT 1 and 2 protein expression.Next,2.5μM and 5.0μM of BZD9L1 were employed in downstream in vitro assays,including cell cycle,cell death and sprouting in EC.The effect of BZD9L1 on cell adhesion molecules and SIRT 1 and 2 were assessed via real-time quantitative polymerase chain reaction(qPCR).The growth factors secreted by EC post-treatment were evaluated using the Quantibody Human Angiogenesis Array.Indirect co-culture with HCT116 CRC cells was performed to investigate the impact of growth factors modulated by BZD9L1-treated EC on CRC.The effect of BZD9L1 on sprouting impediment and vessel regression was determined using mouse choroids.HCT116 cells were also injected subcutaneously into nude mice and analyzed for the outcome of BZD9L1 on tumor necrosis,Ki67 protein expression indicative of proliferation,cluster of differentiation 31(CD31)and CD34 EC markers,and SIRT 1 and 2 genes via hematoxylin and eosin,immunohistochemistry and qPCR,respectively.RESULTS BZD9L1 impeded EC proliferation,adhesion,and spheroid sprouting through the downregulation of intercellular adhesion molecule 1,vascular endothelial cadherin,integrin-alpha V,SIRT1 and SIRT2 genes.The compound also arrested the cells at G1 phase and induced apoptosis in the EC.In mouse choroids,BZD9L1 inhibited sprouting and regressed sprouting vessels compared to the negative control.Compared to the negative control,the compound also reduced the protein levels of angiogenin,basic fibroblast growth factor,platelet-derived growth factor and placental growth factor,which then inhibited HCT116 CRC spheroid invasion in co-culture.In addition,a significant reduction in CRC tumor growth was noted alongside the downregulation of human SIRT1(hSIRT1),hSIRT2,CD31,and CD34 EC markers and murine SIRT2 gene,while the murine SIRT1 gene remained unaffected,compared to vehicle control.Histology analyses revealed that BZD9L1 at low(50 mg/kg)and high(250 mg/kg)doses reduced Ki-67 protein expression,while BZD9L1 at the high dose diminished tumor necrosis compared to vehicle control.CONCLUSION These results highlighted the anti-angiogenic potential of BZD9L1 to reduce CRC tumor progression.Furthermore,together with previous anticancer findings,this study provides valuable insights into the potential of BZD9L1 to co-target CRC tumor vasculatures and cancer cells via SIRT1 and/or SIRT2 down-regulation to improve the therapeutic outcome.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81941011(to XL),31771053(to HD),31730030(to XL),31971279(to ZY),31900749(to PH),31650001(to XL),31320103903(to XL),31670988(to ZY)the Natural Science Foundation of Beijing,Nos.7222004(to HD)+1 种基金a grant from Ministry of Science and Technology of China,Nos.2017YFC1104002(to ZY),2017YFC1104001(to XL)a grant from Beihang University,No.JKF-YG-22-B001(to FH)。
文摘Attempts have been made to use cell transplantation and biomaterials to promote cell proliferation,differentiation,migration,and survival,as well as angiogenesis,in the context of brain injury.However,whether bioactive materials can repair the damage caused by ischemic stroke by activating endogenous neurogenesis and angiogenesis is still unknown.In this study,we applied chitosan gel loaded with basic fibroblast growth factor to the stroke cavity 7 days after ischemic stroke in rats.The gel slowly released basic fibroblast growth factor,which improved the local microenvironment,activated endogenous neural stem/progenitor cells,and recruited these cells to migrate toward the penumbra and stroke cavity and subsequently differentiate into neurons,while enhancing angiogenesis in the penumbra and stroke cavity and ultimately leading to partial functional recovery.This study revealed the mechanism by which bioactive materials repair ischemic strokes,thus providing a new strategy for the clinical application of bioactive materials in the treatment of ischemic stroke.
基金Supported by Natural Science Foundation of Guangdong Province,No.2020A1515011539.
文摘BACKGROUND Hepatic arterial infusion chemotherapy(HAIC)has been proven to be an ideal choice for treating unresectable hepatocellular carcinoma(uHCC).HAIC-based treatment showed great potential for treating uHCC.However,large-scale studies on HAIC-based treatments and meta-analyses of first-line treatments for uHCC are lacking.AIM To investigate better first-line treatment options for uHCC and to assess the safety and efficacy of HAIC combined with angiogenesis inhibitors,programmed cell death of protein 1(PD-1)and its ligand(PD-L1)blockers(triple therapy)under real-world conditions.METHODS Several electronic databases were searched to identify eligible randomized controlled trials for this meta-analysis.Study-level pooled analyses of hazard ratios(HRs)and odds ratios(ORs)were performed.This was a retrospective single-center study involving 442 patients with uHCC who received triple therapy or angiogenesis inhibitors plus PD-1/PD-L1 blockades(AIPB)at Sun Yat-sen University Cancer Center from January 2018 to April 2023.Propensity score matching(PSM)was performed to balance the bias between the groups.The Kaplan-Meier method and cox regression were used to analyse the survival data,and the log-rank test was used to compare the suvival time between the groups.RESULTS A total of 13 randomized controlled trials were included.HAIC alone and in combination with sorafenib were found to be effective treatments(P values for ORs:HAIC,0.95;for HRs:HAIC+sorafenib,0.04).After PSM,176 HCC patients were included in the analysis.The triple therapy group(n=88)had a longer median overall survival than the AIPB group(n=88)(31.6 months vs 14.6 months,P<0.001)and a greater incidence of adverse events(94.3%vs 75.4%,P<0.001).CONCLUSION This meta-analysis suggests that HAIC-based treatments are likely to be the best choice for uHCC.Our findings confirm that triple therapy is more effective for uHCC patients than AIPB.
基金supported by the GRF RGC&CRF,Hong Kong(Grant Nos.:475012 and C5045-20 EF)HMRF,Hong Kong(Grant No.:03141386)+3 种基金ITF,Hong Kong(Grant No.:ITS/209/12)UGC Direct Grant 2011,2012,2021.032HKOG Trust Fund 2011,2014,2019the National Natural Science Foundation of China(Grant Nos.:81974225 and 82201823)。
文摘Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus.Angiogenesis is a major pathophysiology in endometriosis.Our previous studies have demonstrated that the prodrug of epigallocatechin gallate(ProEGCG)exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate(EGCG).However,their direct binding targets and underlying mechanisms for the differential effects remain unknown.In this study,we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis.Additionally,1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin(MTDH)and PX domain containing serine/threonine kinase-like(PXK)as novel binding targets of EGCG and ProEGCG,respectively.Computational simulation and BioLayer interferometry were used to confirm their binding affinity.Our results showed that MTDH-EGCG inhibited protein kinase B(Akt)-mediated angiogenesis,while PXK-ProEGCG inhibited epidermal growth factor(EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor(HIF-1a)/vascular endothelial growth factor(VEGF)pathway.In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways.Moreover,our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.
基金supported by Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ11-061,ZZ14-YQ-007)the National Natural Science Foundation of China(82004193)+1 种基金CACMS Innovation Fund(CI 2021A00914)Irma and Paul Milstein Program for Senior Health of Milstein Medical Asian American Partnership Foundation。
文摘Atherosclerosis remains a great threat to human health worldwide.Previous studies found that tetramethylpyrazine(TMP)and paeonifl orin(PF)combination(TMP-PF)exerts anti-atherosclerotic effects in vitro.However,whether TMP-PF improves atherosclerosis in vivo needs further exploration.The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE^(-/-)mice and explore the related molecule mechanisms.Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels,suppressed vascular endothelial growth factor receptor 2(VEGFR2)and nuclear receptor subfamily 4 group A member 1(NR4A1)expression in aortic tissues,inhibited plaque angiogenesis,reduced plaque areas,and alleviated atherosclerosis in ApoE^(-/-)mice.Also,TMP-PF exhibited a better modulation effect than TMP or PF alone.However,NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF.In conclusion,TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway,indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.
基金supported by the National Natural Science Foundation of China (Grant No. 81973861)Zhejiang Provincial Ministry Medical and Health Co-construction Major Project (Grant No. 20214355173)+2 种基金Zhejiang Science and Technology Department“Vanguard”“Leading Goose”research (Grant No. 2023C03044)Zhejiang Provincial Health“Leading Talents”ProjectZhejiang Medical and Health Science and Technology Project (Grant No. 2022KY558)。
文摘Angiogenesis is considered a hallmark pathophysiological process in tumor development. Aberrant vasculature resulting from tumor angiogenesis plays a critical role in the development of resistance to breast cancer treatments, via exacerbation of tumor hypoxia, decreased effective drug concentrations within tumors, and immune-related mechanisms. Antiangiogenic therapy can counteract these breast cancer resistance factors by promoting tumor vascular normalization. The combination of antiangiogenic therapy with chemotherapy, targeted therapy, or immunotherapy has emerged as a promising approach for overcoming drug resistance in breast cancer. This review examines the mechanisms associated with angiogenesis and the interactions among tumor angiogenesis, the hypoxic tumor microenvironment, drug distribution, and immune mechanisms in breast cancer. Furthermore, this review provides a comprehensive summary of specific antiangiogenic drugs, and relevant studies assessing the reversal of drug resistance in breast cancer. The potential mechanisms underlying these interventions are discussed, and prospects for the clinical application of antiangiogenic therapy to overcome breast cancer treatment resistance are highlighted.
基金supported by the National Natural Science Foundation of China,Nos.81801236(to ZX),81974189(to HT)a grant from Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,No.ynlc201719(to QZ).
文摘Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways.
文摘Objective:To assess the antimicrobial,antibiofilm,anti-inflammatory,angiogenic,and wound healing activities of zinc nanoparticles(ZNPs)green synthesized using Ferula macrecolea extract.Methods:The green synthesis was conducted using the precipitation method.Then,the minimum inhibitory concentration(MIC),minimum bactericidal concentration(MBC),and minimum biofilm inhibition concentration 50%(MBIC50)of ZNPs against Staphylococcus aureus(S.aureus)and Pseudomonas aeruginosa(P.aeruginosa)were evaluated.The effects of ZNPs on the gene expressions of Staphylococcus spp.[intracellular adhesion A(icaA)and D(icaD)]and P.aeruginosa(rhlI and rhlR)were investigated using quantitative real-time PCR.In addition,the effects of ZNPs on wound healing,angiogenesis,and anti-inflammatory markers were assessed.Results:The green-synthesized ZNPs demonstrated significant antimicrobial efficacy against S.aureus and P.aeruginosa.The biofilm formation in S.aureus and P.aeruginosa was also inhibited by ZNPs with MBIC50 values of 3.30μg/mL and 2.08μg/mL,respectively.Additionally,ZNPs downregulated the expression of biofilm-related genes icaA,icaD,rhlI,and rhlR in the tested bacteria.They also demonstrated promising in vitro wound healing effects by promoting fibroblast cell proliferation and wound closure in a dose-dependent manner.A significant increase in the expression of HLA-G5 and VEGF-A genes as well as a marked decrease in the expression of NF-κB,IL-1β,and TNF-αgenes were observed in cells treated with ZNPs compared to the control group(P<0.05).Conclusions:ZNPs display promising antibacterial effects against S.aureus and P.aeruginosa and wound-healing effects by inhibiting biofilm formation,inducing angiogenesis,and reducing inflammation.However,further studies must be conducted to specify the accurate mechanisms of action and toxicity of ZNPs.
基金the Science and Technology Program of Shaanxi Province(No.2024SF-YBXM-324)Matching Funds of the Science and Technology Program of Shaanxi Province(No.XYFYPT-2023-01)Health Scientific and Technology Projects of Hangzhou(No.B20231615).
文摘AIM:To observe the effect of ghrelin,a growth hormonereleasing peptide,on retinal angiogenesis in vitro under high glucose(HG)stress and to explore the possible mechanism of autophagy.METHODS:Human retinal microvascular endothelial cells(HRMECs)were treated with high concentration of glucose alone or in combination with ghrelin.The cell migration,tube formation and the expression of the autophagy-related proteins LC3-II/I,Beclin-1,p62,phosphorylated AKT(p-AKT)/AKT and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR were detected.Then,to clarify the correlation between ghrelin effect and autophagy,AKT inhibitor VIII was adopted to treat HRMECs,and cell migration,tube formation as well as the protein expressions of LC3-II/I,Beclin-1 and p62 were observed.RESULTS:Under HG stress,ghrelin inhibited migration and tube formation of HRMECs.Ghrelin inhibited the increases in the protein levels of LC3-II/I,Beclin-1 and the decreases in the protein levels of p62,p-AKT/AKT and p-mTOR/mTOR induced by HG stress.Moreover,under the action of AKT/mTOR pathway inhibitors,the effects of ghrelin on migration and tube formation were both reduced.In addition,the expression of LC3-II/I and Beclin-1 were significantly up-regulated and the expression of p62 was down-regulated.CONCLUSION:Retinal angiogenesis under in vitro HG stress can be inhibited by ghrelin through activating AKT/mTOR pathway to inhibit autophagy.
基金supported by grants from National Key R&D Programme of China (No. 2022YFC2504200)the Fundamental Research Funds for the Central Universities (No. 2042023kf0154, No. 2042023kfyq02)+1 种基金the National Nature Science Foundation of China (No. 82273306, No.81901016, No. 82303326)Wuhan Knowledge Innovation Program (No.2022020801020469)。
文摘A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged studies of angiogenesis in OSF. Here, we found that the expression of thrombospondin 1 (THBS1), an endogenous angiostatic protein, was elevated in the stroma of tissues with OSF. Using a fibroblast-attached organoid (FAO) model, the overexpression of THBS1 in OSF was stably recapitulated in vitro. In the FAO model,treatment with arecoline, a major pathogenic component in areca nuts, enhanced the secretion of transforming growth factor (TGF)-β1 by epithelial cells, which then promoted the expression of THBS1 in fibroblasts. Furthermore, human umbilical vein endothelial cells (HUVECs)were incorporated into the FAO to mimic the vascularized component. Overexpression of THBS1 in fibroblasts drastically suppressed the sprouting ability of endothelial cells in vascularized FAOs (v FAOs). Consistently, treatment with arecoline reduced the expression of CD31in v FAOs, and this effect was attenuated when the endothelial cells were preincubated with neutralizing antibody of CD36, a receptor of THBS1. Finally, in an arecoline-induced rat OSF model, THBS1 inhibition alleviated collagen deposition and the decline in vascularity in vivo. Overall, we exploited an assembled organoid model to study OSF pathogenesis and provide a rationale for targeting THBS1.
基金supported by funding from the National Institutes of Health(R01 NS117510)(to RLM)。
文摘Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose and oxygen through its vascular networks.Brain vasculature consists of highly divergent blood vessel branches,giving rise to a dense network of capillaries that supply blood to all cells across the brain.This elaborated vascular network is thought to develop via angiogenesis,a process in which new blood vessels grow from pre-existing vasculature.Brain capillaries exhibit organotypic features distinct from other tissues and are formed primarily by two major endothelial cell(EC)types:those that form the semi-permeable blood-brain barrier(BBB)and those that develop highly permeable pores known as fenestrae(Matsuoka et al.,2022).The structural and functional differences between BBB and fenestrated vascular ECs represent a fundamental feature of brain vasculature and form the foundation for both brain function and homeostasis.
基金Supported by the National Natural Science Foundation of China(No.82171076,No.82301221)Shanghai Municipal Education Commission(No.2023ZKZD18).
文摘AIM:To investigate the effect ofβ-alanine(BA)on laserinduced choroidal neovascularization(CNV)mice models.METHODS:Laser-induced CNV mice models were established,and BA was administrated for one week and two weeks in advance,separately.Furthermore,retinal pigment epithelium(RPE)-choroid flat mounts were separated,and immunohistochemical staining was performed.The laser-induced CNV lesion areas were measured and compared.In addition,liver and kidney morphologies were observed to identify potential hepatorenal toxicity.RESULTS:Enlarged CNV lesion areas were observed in the BA treated group.No significant differences were observed in the liver and kidney sections between groups.CONCLUSION:BA treatment increase CNV lesion areas,suggesting the detrimental effects of BA as a nutritional supplement in age-related macular degeneration(AMD)population.
文摘BACKGROUND Bone healing is a complex process involving early inflammatory immune regu-lation,angiogenesis,osteogenic differentiation,and biomineralization.Fracture repair poses challenges for orthopedic surgeons,necessitating the search for efficient healing methods.AIM To investigate the underlying mechanism by which hydrogel-loaded exosomes derived from bone marrow mesenchymal stem cells(BMSCs)facilitate the process of fracture healing.METHODS Hydrogels and loaded BMSC-derived exosome(BMSC-exo)gels were charac-terized to validate their properties.In vitro evaluations were conducted to assess the impact of hydrogels on various stages of the healing process.Hydrogels could recruit macrophages and inhibit inflammatory responses,enhance of human umbilical vein endothelial cell angiogenesis,and promote the osteogenic differen-tiation of primary cranial osteoblasts.Furthermore,the effect of hydrogel on fracture healing was confirmed using a mouse fracture model.RESULTS The hydrogel effectively attenuated the inflammatory response during the initial repair stage and subsequently facilitated vascular migration,promoted the formation of large vessels,and enabled functional vascularization during bone repair.These effects were further validated in fracture models.CONCLUSION We successfully fabricated a hydrogel loaded with BMSC-exo that modulates macrophage polarization and angiogenesis to influence bone regeneration.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0803700)the National Natural Science Foundation of China(Grant Nos.91639108,81770272,and 81970425)+1 种基金the Beijing Natural Science Foundation(Grant No.7212044)the Beijing Hospital Authority Youth Program(Grant No.QML20190306)。
文摘Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-associated death worldwide.Angiogenesis,the process of formation of new blood vessels,is required for cancer cells to obtain nutrients and oxygen.HCC is a typical hypervascular solid tumor with an aberrant vascular network and angiogenesis that contribute to its growth,progression,invasion,and metastasis.Current anti-angiogenic therapies target mainly tyrosine kinases,vascular endothelial growth factor receptor(VEGFR),and plateletderived growth factor receptor(PDGFR),and are considered effective strategies for HCC,particularly advanced HCC.However,because the survival benefits conferred by these anti-angiogenic therapies are modest,new anti-angiogenic targets must be identified.Several recent studies have determined the underlying molecular mechanisms,including pro-angiogenic factors secreted by HCC cells,the tumor microenvironment,and cancer stem cells.In this review,we summarize the roles of pro-angiogenic factors;the involvement of endothelial cells,hepatic stellate cells,tumor-associated macrophages,and tumor-associated neutrophils present in the tumor microenvironment;and the regulatory influence of cancer stem cells on angiogenesis in HCC.Furthermore,we discuss some of the clinically approved anti-angiogenic therapies and potential novel therapeutic targets for angiogenesis in HCC.A better understanding of the mechanisms underlying angiogenesis may lead to the development of more optimized anti-angiogenic treatment modalities for HCC.
基金supported by the National Natural Science Foundation of China,Nos.81801169 (to LXX),82071404 (to HC),81870952 (to HMW)。
文摘Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promote angiogenesis in hypoxia and traumatic brain injury model,while its effect on ischemic stroke remains elusive.In this study,we found that overexpression of miR-181b in brain microvascular endothelial cells subjected to oxygen-glucose deprivation in vitro restored cell prolife ration and enhanced angiogenesis.In rat models of focal cerebral ischemia,ove rexpression of miR-181b reduced infarction volume,promoted angiogenesis in ischemic penumbra,and improved neurological function.We further investigated the molecular mechanism by which miR-181b participates in angiogenesis after ischemic stroke and found that miR-181b directly bound to the 3’-UTR of phosphatase and tensin homolog(PTEN) mRNA to induce PTEN downregulation,leading to activation of the protein kinase B(Akt) pathway,upregulated expression of vascular endothelial growth facto rs,down-regulated expression of endostatin,and promoted angiogenesis.Taken togethe r,these results indicate that exogenous miR-181b exhibits neuroprotective effects on ischemic stro ke through activating the PTEN/Akt signal pathway and promoting angiogenesis.
基金supported by the Zhejiang Province Key Research and Development Program(No.2021C03059)。
文摘Large bone defect regeneration has always been recognized as a challenging clinical problem due to the difficulty of revascularization.Conventional treatments exhibit certain inherent disadvantages(e.g.,secondary injury,immunization,and potential infections).However,three-dimensional(3D)printing technology as an emerging field can serve as an effective approach to achieve satisfactory revascularization while making up for the above limitations.A wide variety of methods can be used to facilitate blood supply during the design of a 3D-printed scaffold.Importantly,the scaffold structure lays a foundation for the entire printing object;any method to promote angiogenesis can be effective only if it is based on well-designed scaffolds.In this review,different designs related to angiogenesis are summarized by collecting the literature from recent years.The 3D-printed scaffolds are classified into four major categories and discussed in detail,from elementary porous scaffolds to the most advanced bone-like scaffolds.Finally,structural design suggestions to achieve rapid angiogenesis are proposed by analyzing the above architectures.This review can provide a reference for organizations or individual academics to achieve improved bone defect repair and regeneration using 3D printing.
基金supported by the Natural Nature Science Foundation of China,Nos.82030071,81874004the Science and Technology Major Project of Changsha,No.kh2103008(all to JZH).
文摘Treatment with metformin can lead to the recovery of pleiotropic biological activities after spinal cord injury.However,its effect on spinal cord injury in aged mice remains unclear.Considering the essential role of angiogenesis during the regeneration process,we hypothesized that metformin activates the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway in endothelial cells,thereby promoting microvascular regeneration in aged mice after spinal cord injury.In this study,we established young and aged mouse models of contusive spinal cord injury using a modified Allen method.We found that aging hindered the recovery of neurological function and the formation of blood vessels in the spinal cord.Treatment with metformin promoted spinal cord microvascular endothelial cell migration and blood vessel formation in vitro.Furthermore,intraperitoneal injection of metformin in an in vivo model promoted endothelial cell proliferation and increased the density of new blood vessels in the spinal cord,thereby improving neurological function.The role of metformin was reversed by compound C,an adenosine monophosphate-activated protein kinase inhibitor,both in vivo and in vitro,suggesting that the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway likely regulates metformin-mediated angiogenesis after spinal cord injury.These findings suggest that metformin promotes vascular regeneration in the injured spinal cord by activating the adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway,thereby improving the neurological function of aged mice after spinal cord injury.
基金supported by grants from the National Natural Science Foundation of China(No.81374029,No.81073111,No.81874359)Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.18KJD360002)+1 种基金a Project Funded by Jiangsu Agri-animal Husbandry Vocational College(No.NSF2021CB04)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(No.JKLPSE201604).
文摘Objective:The main characteristics of diabetic nephropathy(DN)at the early stage are abnormal angiogenesis of glomerular endothelial cells(GECs)and macrophage infiltration.Galectin-3 plays a pivotal role in the pathogenesis of DN via binding with its ligand,advanced glycation end products(AGEs).Catalpol,an iridoid glucoside extracted from Rehmannia glutinosa,has been found to ameliorate vascular inflammation,reduce endothelial permeability,and protect against endothelial damage in diabetic milieu.However,little is known about whether catalpol could exert an anti-angiogenesis and anti-inflammation effect induced by AGEs.Methods:Mouse GECs(mGECs)and RAW 264.7 macrophages were treated with different concentrations of AGEs(0,50,100,200 and 400μg/mL)for different time(0,6,12,24 and 48 h)to determine the optimal concentration of AGEs and treatment time.Cells were treated with catalpol(10μmol/L),GB1107(1μmol/L,galectin-3 inhibitor),PX-478(50μmol/L,HIF-1αinhibitor),adenovirus-green fluorescent protein(Ad-GFP)[3×10^(7)plaque-forming unit(PFU)/mL]or Ad-galectin-3-GFP(2×10^(8)PFU/mL),which was followed by incubation with 50μg/mL AGEs.The levels of galectin-3,vascular endothelial growth factor A(VEGFA)and pro-angiogenic factors angiopoietin-1(Ang-1),angiopoietin-2(Ang-2),tunica interna endothelial cell kinase-2(Tie-2)were detected by enzyme-linked immunosorbent assay(ELISA).Cell counting kit-8(CCK-8)assay was used to evaluate the proliferation of these cells.The expression levels of galectin-3,vascular endothelial growth factor receptor 1(VEGFR1),VEGFR2,and hypoxia-inducible factor-1α(HIF-1α)in mGECs and those of galectin-3 and HIF-1αin RAW 264.7 macrophages were detected by Western blotting and immunofluorescence(IF)staining.The rat DN model was established.Catalpol(100 mg/kg)or GB1107(10 mg/kg)was administered intragastrically once a day for 12 weeks.Ad-galectin-3-GFP(6×10^(7)PFU/mL,0.5 mL)or Ad-GFP(6×10^(6)PFU/mL,0.5 mL)was injected into the tail vein of rats 48 h before the sacrifice of the animals.The expression of galectin-3,VEGFR1,.VEGFR2,and HIF-1αin renal cortices was analyzed by Western blotting.The expression of galectin-3,F4/80(a macrophage biomarker),and CD34(an endothelium biomarker)in renal cortices was detected by IF staining,and collagen accumulation by Masson staining.Results:The expression levels of galectin-3 and VEGFA were significantly higher in mGECs and RAW 264.7 macrophages treated with 50μg/mL AGEs for 48 h than those in untreated cells.Catalpol and GB1107 could block the AGEs-induced proliferation of mGECs and RAW 264.7 macrophages.Over-expression of galectin-3 was found to reduce the inhibitory effect of catalpol on the proliferation of cells.Catalpol could significantly decrease the levels of Ang-1,Ang-2 and Tie-2 released by AGEs-treated mGECs,which could be reversed by over-expression of galectin-3.Catalpol could significantly inhibit AGEs-induced expression of galectin-3,HIF-1α,VEGFR1,and VEGFR2 in mGECs.The inhibitory effect of catalpol on galectin-3 in AGEs-treated mGECs was impaired by PX-478.Moreover,catalpol attenuated the AGEs-activated HIF-1α/galectin-3 pathway in RAW 264.7 macrophages,which was weakened by PX-478.Additionally,catalpol significantly inhibited the expression of galectin-3,macrophage infiltration,collagen accumulation,and angiogenesis in the kidney of diabetic rats.Over-expression of galectin-3 could antagonize these inhibitory effects of catalpol.Conclusion:Catalpol prevented the angiogenesis of mGECs and macrophage proliferation via inhibiting galectin-3.It could prevent the progression of diabetes-induced renal damage.
基金the Natural Science Foundation of Liaoning Province,No.2023-MS-149.
文摘BACKGROUND As a novel endogenous anti-angiogenic molecule, vasohibin 1(VASH1) is not only expressed in tumor stroma, but also in tumor tissue. Moreover, studies have shown that VASH1 may be a prognostic marker in colorectal cancer(CRC). Knockdown of VASH1 enhanced transforming growth factor-β1(TGF-β1)/Smad3 pathway activity and type Ⅰ/Ⅲ collagen production. Our previous findings suggest that ELL-associated factor 2(EAF2) may play a tumor suppressor and protective role in the development and progression of CRC by regulating signal transducer and activator of transcription 3(STAT3)/TGF-β1 signaling pathway. However, the functional role and mechanism of VASH1-mediated TGF-β1 related pathway in CRC has not been elucidated.AIM To investigate the expression of VASH1 in CRC and its correlation with the expression of EAF2. Furthermore, we studied the functional role and mechanism of VASH1 involved in the regulation and protection of EAF2 in CRC cells in vitro.METHODS We collected colorectal adenocarcinoma and corresponding adjacent tissues to investigate the clinical expression of EAF2 protein and VASH1 protein in patients with advanced CRC. Following, we investigated the effect and mechanism of EAF2 and VASH1 on the invasion, migration and angiogenesis of CRC cells in vitro using plasmid transfection.RESULTS Our findings indicated that EAF2 was down-regulated and VASH1 was upregulated in advanced CRC tissue compared to normal colorectal tissue. KaplanMeier survival analysis showed that the higher EAF2 Level group and the lower VASH1 Level group had a higher survival rate. Overexpression of EAF2 might inhibit the activity of STAT3/TGF-β1 pathway by up-regulating the expression of VASH1, and then weaken the invasion, migration and angiogenesis of CRC cells.CONCLUSION This study suggests that EAF2 and VASH1 may serve as new diagnostic and prognostic markers for CRC, and provide a clinical basis for exploring new biomarkers for CRC. This study complements the mechanism of EAF2 in CRC cells, enriches the role and mechanism of CRC cellderived VASH1, and provides a new possible subtype of CRC as a therapeutic target of STAT3/TGF-β1 pathway.
基金Peking Union Medical CollegeCAMS initiative for Innovative Medicine of ChinaGrant/Award Number:2021-I2M-1-034
文摘Background:Pathological angiogenesis and blood–brain barrier damage may play an important role in Alzheimer's disease(AD).ACE2 is mainly expressed on the surface of endothelial cells in brain.Recent studies have shown that the expression of ACE2 in AD is reduced,but its role in AD is still unclear.Method:We induced AD damage in endothelial cells using Aβ25-35 and overexpressed ACE2 in bEend.3 cells through lentiviral transfection.We detected the effect of Aβ25-35 on cell viability using the CCK-8 assay and examined the effect of overexpressing ACE2 on angiogenesis using an angiogenesis assay.We used western blot and cell immunofluorescence to detect changes in the expression of the VEGF/VEGFR2 pathway,tight junction protein,and NF-κB pathway.Results:Aβ25-35 treatment significantly decreased the expression of ACE2 and reduced cell viability.ACE2 overexpression(1)reduced the number of branches and junctions in tube formation,(2)inhibited the activation of the VEGF/VEGFR2 pathway induced by Aβ25-35,(3)increased the expression of TJPs,including ZO-1 and claudin-5,and(4)restored Aβ25-35-induced activation of the NF-κB pathway.Conclusion:Overexpression of ACE2 can improve pathological angiogenesis and blood–brain barrier damage in AD models in vitro by inhibiting NF-κB/VEGF/VEGFR2 pathway activity.ACE2 may therefore represent a therapeutic target for endothelial cell dysfunction in AD.
基金Supported by the Ministry of Higher Education Malaysia for the Fundamental Research Grant Scheme,No. FRGS/1/2021/SKK06/USM/02/7
文摘BACKGROUND The development of new vasculatures(angiogenesis)is indispensable in supplying oxygen and nutrients to fuel tumor growth.Epigenetic dysregulation in the tumor vasculature is critical to colorectal cancer(CRC)progression.Sirtuin(SIRT)enzymes are highly expressed in blood vessels.BZD9L1 benzimidazole analogue is a SIRT 1 and 2 inhibitor with reported anticancer activities in CRC.However,its role has yet to be explored in CRC tumor angiogenesis.AIM To investigate the anti-angiogenic potential of BZD9L1 on endothelial cells(EC)in vitro,ex vivo and in HCT116 CRC xenograft in vivo models.METHODS EA.hy926 EC were treated with half inhibitory concentration(IC50)(2.5μM),IC50(5.0μM),and double IC50(10.0μM)of BZD9L1 and assessed for cell proliferation,adhesion and SIRT 1 and 2 protein expression.Next,2.5μM and 5.0μM of BZD9L1 were employed in downstream in vitro assays,including cell cycle,cell death and sprouting in EC.The effect of BZD9L1 on cell adhesion molecules and SIRT 1 and 2 were assessed via real-time quantitative polymerase chain reaction(qPCR).The growth factors secreted by EC post-treatment were evaluated using the Quantibody Human Angiogenesis Array.Indirect co-culture with HCT116 CRC cells was performed to investigate the impact of growth factors modulated by BZD9L1-treated EC on CRC.The effect of BZD9L1 on sprouting impediment and vessel regression was determined using mouse choroids.HCT116 cells were also injected subcutaneously into nude mice and analyzed for the outcome of BZD9L1 on tumor necrosis,Ki67 protein expression indicative of proliferation,cluster of differentiation 31(CD31)and CD34 EC markers,and SIRT 1 and 2 genes via hematoxylin and eosin,immunohistochemistry and qPCR,respectively.RESULTS BZD9L1 impeded EC proliferation,adhesion,and spheroid sprouting through the downregulation of intercellular adhesion molecule 1,vascular endothelial cadherin,integrin-alpha V,SIRT1 and SIRT2 genes.The compound also arrested the cells at G1 phase and induced apoptosis in the EC.In mouse choroids,BZD9L1 inhibited sprouting and regressed sprouting vessels compared to the negative control.Compared to the negative control,the compound also reduced the protein levels of angiogenin,basic fibroblast growth factor,platelet-derived growth factor and placental growth factor,which then inhibited HCT116 CRC spheroid invasion in co-culture.In addition,a significant reduction in CRC tumor growth was noted alongside the downregulation of human SIRT1(hSIRT1),hSIRT2,CD31,and CD34 EC markers and murine SIRT2 gene,while the murine SIRT1 gene remained unaffected,compared to vehicle control.Histology analyses revealed that BZD9L1 at low(50 mg/kg)and high(250 mg/kg)doses reduced Ki-67 protein expression,while BZD9L1 at the high dose diminished tumor necrosis compared to vehicle control.CONCLUSION These results highlighted the anti-angiogenic potential of BZD9L1 to reduce CRC tumor progression.Furthermore,together with previous anticancer findings,this study provides valuable insights into the potential of BZD9L1 to co-target CRC tumor vasculatures and cancer cells via SIRT1 and/or SIRT2 down-regulation to improve the therapeutic outcome.