In deregulated electricity markets, price forecasting is gaining importance between various market players in the power in order to adjust their bids in the day-ahead electricity markets and maximize their profits. El...In deregulated electricity markets, price forecasting is gaining importance between various market players in the power in order to adjust their bids in the day-ahead electricity markets and maximize their profits. Electricity price is volatile but non random in nature making it possible to identify the patterns based on the historical data and forecast. An accurate price forecasting method is an important factor for the market players as it enables them to decide their bidding strategy to maximize profits. Various models have been developed over a period of time which can be broadly classified into two types of models that are mainly used for Electricity Price forecasting are: 1) Time series models;and 2) Simulation based models;time series models are widely used among the two, for day ahead forecasting. The presented work summarizes the influencing factors that affect the price behavior and various established forecasting models based on time series analysis, such as Linear regression based models, nonlinear heuristics based models and other simulation based models.展开更多
电离层总电子含量TEC(Total Electron Content)是电离层的一个重要特征参数。对TEC的预报也已经成为电离层研究的一个热点。根据JS CORS中心提供的GPS观测数据,建立了区域实时多站多项式模型;并分别以模型计算得到的南京地区的电离层电...电离层总电子含量TEC(Total Electron Content)是电离层的一个重要特征参数。对TEC的预报也已经成为电离层研究的一个热点。根据JS CORS中心提供的GPS观测数据,建立了区域实时多站多项式模型;并分别以模型计算得到的南京地区的电离层电子含量数据和苏州地区的电离层电子含量数据为样本,采用时间序列和BP神经网络融合模型进行了预报。结果表明,采用融合模型在短期预报中能够取得较好的效果,精度比时间序列模型提高20%左右。展开更多
文摘In deregulated electricity markets, price forecasting is gaining importance between various market players in the power in order to adjust their bids in the day-ahead electricity markets and maximize their profits. Electricity price is volatile but non random in nature making it possible to identify the patterns based on the historical data and forecast. An accurate price forecasting method is an important factor for the market players as it enables them to decide their bidding strategy to maximize profits. Various models have been developed over a period of time which can be broadly classified into two types of models that are mainly used for Electricity Price forecasting are: 1) Time series models;and 2) Simulation based models;time series models are widely used among the two, for day ahead forecasting. The presented work summarizes the influencing factors that affect the price behavior and various established forecasting models based on time series analysis, such as Linear regression based models, nonlinear heuristics based models and other simulation based models.
文摘电离层总电子含量TEC(Total Electron Content)是电离层的一个重要特征参数。对TEC的预报也已经成为电离层研究的一个热点。根据JS CORS中心提供的GPS观测数据,建立了区域实时多站多项式模型;并分别以模型计算得到的南京地区的电离层电子含量数据和苏州地区的电离层电子含量数据为样本,采用时间序列和BP神经网络融合模型进行了预报。结果表明,采用融合模型在短期预报中能够取得较好的效果,精度比时间序列模型提高20%左右。