All-position robots are widely applied in the welding of complicated parts.Welding of intersecting pipes is one of the most typical tasks.The welding seam is a complicated saddle-like space curve,which puts a great ch...All-position robots are widely applied in the welding of complicated parts.Welding of intersecting pipes is one of the most typical tasks.The welding seam is a complicated saddle-like space curve,which puts a great challenge to the pose planning of end-effector.The special robots designed specifically for this kind of tasks are rare in China and lack sufficient theoretical research.In this paper,a systematic research on the pose planning for the end-effectors of robot in the welding of intersecting pipes is conducted. First,the intersecting curve of pipes is mathematically analyzed.The mathematical model of the most general intersecting curve of pipes is derived,and several special forms of this model in degraded situations are also discussed.A new pose planning approach of bisecting angle in main normal plane(BAMNP) for the welding-gun is proposed by using differential geometry and the comparison with the traditional bisecting angle in axial rotation plane(BAARP) method is also analytically conducted.The optimal pose of the welding-gun is to make the orientation posed at the center of the small space formed by the two cylinders and the intersecting curve to help the welding-pool run smoothly.The BAMNP method can make sure the pose vertical to the curve and center between the two cylinders at the same time,therefore its performance in welding-technique is superior to the BAARP method.By using the traditional BAARP method,the robot structure can become simpler and easier to be controlled,because one degree of freedom(DOF) of the robot can be reduced.For the special case of perpendicular intersecting,an index is constructed to evaluate the quality of welding technique in the process of welding.The effect of different combination of pipe size on this index is also discussed.On the basis of practical consideration,selection principle for BAARP and BAMNP is described.The simulations of those two methods for a serial joint-type robot are made in MATLAB,and the simulation results are consistent to the analysis.The mathematical model and the proposed new pose-planning method will lay a solid foundation for future researches on the control and design of all-position welding robots.展开更多
Equal channel angular pressing (ECAP) is an effective thermo-mechanical process to make ultrafine grains. An investigation was carried out on the friction stir welding (FSW) of ECAPed AZ31 magnesium alloys with a ...Equal channel angular pressing (ECAP) is an effective thermo-mechanical process to make ultrafine grains. An investigation was carried out on the friction stir welding (FSW) of ECAPed AZ31 magnesium alloys with a thickness of 15 mm. For different process parameters, the optimum FSW conditions of ECAPed AZ31 magnesium alloys were examined. The basic characterization of weld formation and the mechanical properties of the joints were discussed. The results show that the effect of welding parameters on welding quality was evident and welding quality was sensitive to welding speed. Sound joints could be obtained when the welding speed was 37.5 mm/min and the rotation speed of the stir tool was 750 r/min. The maximum tensile strength (270 MPa) of FSW was 91% that of the base materials. The value of microhardness varied between advancing side and retreating side because of the speed field near the pin of the stir tool, which weakened the deformed stress field. The value of microhardness of the welding zone was lower than that of the base materials. The maximum value was located near the heat-affected zone (HAZ). Remarkable ductile character was observed from the fracture morphologies of welded joints.展开更多
Thick walled curve welding are usually joined by multi-layer and multi-pass welding, which quality and efficiency could be improved by off-line programming of robot welding. However, the precision of off-line programm...Thick walled curve welding are usually joined by multi-layer and multi-pass welding, which quality and efficiency could be improved by off-line programming of robot welding. However, the precision of off-line programming welding path was decreased due to the deviation between the off-line planned welding path and the actual welding path. A path planning algorithm and a path compensation algorithm of multi-layer and multi-pass curve welding seam for off-line programming of robot welding are developed in this paper. Experimental results show that the robot off-line programming improves the welding efftcieney and precision for thick walled curve welding seam.展开更多
Welding path planning can substitute for the manual teaching process of the robot and can promote the autonomous level of the robotic welding. A path planning method by visual servoing was presented, in which the opti...Welding path planning can substitute for the manual teaching process of the robot and can promote the autonomous level of the robotic welding. A path planning method by visual servoing was presented, in which the optimal angle of charge-coupled device (CCD) camera was also planned. Aiming at planning two forms of kinked line seams, obtuse angle seam and right angle seam, a practicable solution was put forward. In this solution, the intersection of two adjacent straight segments is detected in each local seam image, and if intersection is found, the seam errors are calculated using the next straight segment. The experimental results show that kinked line seam can be well planned using this solution.展开更多
The equalization of Ti 6Al 4V alloy welded joint with base metal on corrosion resistance, strength and ductility was studied. The solidification microstructure is transformed from 650 μm columnar grains to 100 μm eq...The equalization of Ti 6Al 4V alloy welded joint with base metal on corrosion resistance, strength and ductility was studied. The solidification microstructure is transformed from 650 μm columnar grains to 100 μm equiaxed grains by scanning electron beam welding. The anodic polarization curve of 150 μm equiaxed grains coincides with that of base metal. Equal corrosion resistance between weld metal and base metal was obtained. Uniform microstructure and solute distribution are the basis of equalization. Corrosion rate of weld with 150 μm equiaxed grains is the lowest, 2.45 times lower than that of 650 μm columnar grains. Weld strength is 98% as much as that of base metal, yield strength ratio is 99.5%, which is 3.6% higher than that of base metal.展开更多
Aluminum welding using a hybrid system with a laser and scanner welding head was performed under various welding conditions to verify the feasibility of applying an aluminum alloy to a car body.The experimental materi...Aluminum welding using a hybrid system with a laser and scanner welding head was performed under various welding conditions to verify the feasibility of applying an aluminum alloy to a car body.The experimental material was 5J32 aluminum alloy,and the laser power,welding speed,and laser incidence angle were used as the control variables.The weld bead shape and the tensile shear strength were evaluated in order to understand the aluminum lap joint weld characteristics.Analysis of variance (ANOVA) was conducted to identify the effect of the process variables on the tensile shear strength.Tensile strength estimation models using three different regression models were also suggested.The input variables were the laser power,welding speed,and laser incidence angle,and the output was the tensile shear strength.Among the models,the second-order polynomial estimation model had the best estimation performance,and the average error rate of this model was 0.058.展开更多
It was aim to investigate the interfacial microstructure and shear performance of Ti/Cu clad sheet produced by explosive welding and annealing. The experimental results demonstrate that the alternate distribution of i...It was aim to investigate the interfacial microstructure and shear performance of Ti/Cu clad sheet produced by explosive welding and annealing. The experimental results demonstrate that the alternate distribution of interfacial collision and vortex of flyer layer forms in the interface a few of solidification structure. TEM confirms that the interfacial interlayer contains obvious lattice distortion structure and intermetallic compounds. It interprets the explosive welding as the interfacial deformation and thermal diffusion process between dissimilar metals. The interfacial shear strength is very close to the Cu matrix strength, which is determined by the mixture of the mechanical bonding and metallurgical bonding. Several cracks exist on the shear fracture owing to the intermetallic compound in the interfacial solidifi cation structure and also the probable welding inclusion.展开更多
A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By us...A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved.展开更多
In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned acco...In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned according to three teaching points, which is lapped head on end to satisfy the requirement of technology. For the nipples wherever they are arranged radially or axially, even if there are errors caused by positioning and thermal deformations, providing that nipple's position and orientation relative to the teaching one can be measured, the multi path/multi layer circular locus can be planned without teaching any more. The algorithm has been applied in welding robot for manufacturing power station' boiler.展开更多
In this paper, the method of experimental estimation of the temperature in a penetration channel in electron beam welding is described on the basis of chemical elements concentration in the vapors above welding zone. ...In this paper, the method of experimental estimation of the temperature in a penetration channel in electron beam welding is described on the basis of chemical elements concentration in the vapors above welding zone. The temperature of a vapor-gas phase in the penetration channel is determined when equating calculated and experimental concentrations of the elements.展开更多
The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality es...The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.展开更多
Predictive modelling for quality analysis becomes one of the most critical requirements for a continuous improvement of reliability, efficiency and safety of laser welding process. Accurate and effective model to perf...Predictive modelling for quality analysis becomes one of the most critical requirements for a continuous improvement of reliability, efficiency and safety of laser welding process. Accurate and effective model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured approach developed to design an effective artificial neural network based model for predicting the weld bead dimensional characteristic in laser overlap welding of low carbon galvanized steel. The modelling approach is based on the analysis of direct and interaction effects of laser welding parameters such as laser power, welding speed, laser beam diameter and gap on weld bead dimensional characteristics such as depth of penetration, width at top surface and width at interface. The data used in this analysis was derived from structured experimental investigations according to Taguchi method and exhaustive FEM based 3D modelling and simulation efforts. Using a factorial design, different neural network based prediction models were developed, implemented and evaluated. The models were trained and tested using experimental data, supported with the data generated by the 3D simulation. Hold-out test and k-fold cross validation combined to various statistical tools were used to evaluate the influence of the laser welding parameters on the performances of the models. The results demonstrated that the proposed approach resulted successfully in a consistent model providing accurate and reliable predictions of weld bead dimensional characteristics under variable welding conditions. The best model presents prediction errors lower than 7% for the three weld quality characteristics.展开更多
To meet the demands of rapid development of pipeline constructions in China, a complete set of full automatic external welding machine for annular welds of pipeline and welding procedure have been developed thereof. T...To meet the demands of rapid development of pipeline constructions in China, a complete set of full automatic external welding machine for annular welds of pipeline and welding procedure have been developed thereof. The system has been applied in the “West East Pipeline Project” and its performance is proven. With this welding machine the welding parameters can be either preset before or adjusted in real time during the welding process, which avoids the blemishes of same type domestic and international products. Thus it is best propitious to in situ construction conditions and workers’ technical level in China. In this article the development of mechanical and control systems of this product is introduced and typical welding procedure parameters are provided.展开更多
基金supported by National Nautural Science Foundation of China(Grant No.50775002)Key Science and Technology Research Program of Beijing Municipal Commission of Education of China(Grant No.KZ200910005003)
文摘All-position robots are widely applied in the welding of complicated parts.Welding of intersecting pipes is one of the most typical tasks.The welding seam is a complicated saddle-like space curve,which puts a great challenge to the pose planning of end-effector.The special robots designed specifically for this kind of tasks are rare in China and lack sufficient theoretical research.In this paper,a systematic research on the pose planning for the end-effectors of robot in the welding of intersecting pipes is conducted. First,the intersecting curve of pipes is mathematically analyzed.The mathematical model of the most general intersecting curve of pipes is derived,and several special forms of this model in degraded situations are also discussed.A new pose planning approach of bisecting angle in main normal plane(BAMNP) for the welding-gun is proposed by using differential geometry and the comparison with the traditional bisecting angle in axial rotation plane(BAARP) method is also analytically conducted.The optimal pose of the welding-gun is to make the orientation posed at the center of the small space formed by the two cylinders and the intersecting curve to help the welding-pool run smoothly.The BAMNP method can make sure the pose vertical to the curve and center between the two cylinders at the same time,therefore its performance in welding-technique is superior to the BAARP method.By using the traditional BAARP method,the robot structure can become simpler and easier to be controlled,because one degree of freedom(DOF) of the robot can be reduced.For the special case of perpendicular intersecting,an index is constructed to evaluate the quality of welding technique in the process of welding.The effect of different combination of pipe size on this index is also discussed.On the basis of practical consideration,selection principle for BAARP and BAMNP is described.The simulations of those two methods for a serial joint-type robot are made in MATLAB,and the simulation results are consistent to the analysis.The mathematical model and the proposed new pose-planning method will lay a solid foundation for future researches on the control and design of all-position welding robots.
文摘Equal channel angular pressing (ECAP) is an effective thermo-mechanical process to make ultrafine grains. An investigation was carried out on the friction stir welding (FSW) of ECAPed AZ31 magnesium alloys with a thickness of 15 mm. For different process parameters, the optimum FSW conditions of ECAPed AZ31 magnesium alloys were examined. The basic characterization of weld formation and the mechanical properties of the joints were discussed. The results show that the effect of welding parameters on welding quality was evident and welding quality was sensitive to welding speed. Sound joints could be obtained when the welding speed was 37.5 mm/min and the rotation speed of the stir tool was 750 r/min. The maximum tensile strength (270 MPa) of FSW was 91% that of the base materials. The value of microhardness varied between advancing side and retreating side because of the speed field near the pin of the stir tool, which weakened the deformed stress field. The value of microhardness of the welding zone was lower than that of the base materials. The maximum value was located near the heat-affected zone (HAZ). Remarkable ductile character was observed from the fracture morphologies of welded joints.
文摘Thick walled curve welding are usually joined by multi-layer and multi-pass welding, which quality and efficiency could be improved by off-line programming of robot welding. However, the precision of off-line programming welding path was decreased due to the deviation between the off-line planned welding path and the actual welding path. A path planning algorithm and a path compensation algorithm of multi-layer and multi-pass curve welding seam for off-line programming of robot welding are developed in this paper. Experimental results show that the robot off-line programming improves the welding efftcieney and precision for thick walled curve welding seam.
文摘Welding path planning can substitute for the manual teaching process of the robot and can promote the autonomous level of the robotic welding. A path planning method by visual servoing was presented, in which the optimal angle of charge-coupled device (CCD) camera was also planned. Aiming at planning two forms of kinked line seams, obtuse angle seam and right angle seam, a practicable solution was put forward. In this solution, the intersection of two adjacent straight segments is detected in each local seam image, and if intersection is found, the seam errors are calculated using the next straight segment. The experimental results show that kinked line seam can be well planned using this solution.
文摘The equalization of Ti 6Al 4V alloy welded joint with base metal on corrosion resistance, strength and ductility was studied. The solidification microstructure is transformed from 650 μm columnar grains to 100 μm equiaxed grains by scanning electron beam welding. The anodic polarization curve of 150 μm equiaxed grains coincides with that of base metal. Equal corrosion resistance between weld metal and base metal was obtained. Uniform microstructure and solute distribution are the basis of equalization. Corrosion rate of weld with 150 μm equiaxed grains is the lowest, 2.45 times lower than that of 650 μm columnar grains. Weld strength is 98% as much as that of base metal, yield strength ratio is 99.5%, which is 3.6% higher than that of base metal.
基金Project(KRF-2010-0003259)supported by the Korea Research Foundation Grant funded by the Korean Government
文摘Aluminum welding using a hybrid system with a laser and scanner welding head was performed under various welding conditions to verify the feasibility of applying an aluminum alloy to a car body.The experimental material was 5J32 aluminum alloy,and the laser power,welding speed,and laser incidence angle were used as the control variables.The weld bead shape and the tensile shear strength were evaluated in order to understand the aluminum lap joint weld characteristics.Analysis of variance (ANOVA) was conducted to identify the effect of the process variables on the tensile shear strength.Tensile strength estimation models using three different regression models were also suggested.The input variables were the laser power,welding speed,and laser incidence angle,and the output was the tensile shear strength.Among the models,the second-order polynomial estimation model had the best estimation performance,and the average error rate of this model was 0.058.
基金Funded by the National Natural Science Foundation of China(Nos.U1332110 and 50971038)the Project of"Liaoning Bai Qian Wan Talents Program"of China(No.2013921071)
文摘It was aim to investigate the interfacial microstructure and shear performance of Ti/Cu clad sheet produced by explosive welding and annealing. The experimental results demonstrate that the alternate distribution of interfacial collision and vortex of flyer layer forms in the interface a few of solidification structure. TEM confirms that the interfacial interlayer contains obvious lattice distortion structure and intermetallic compounds. It interprets the explosive welding as the interfacial deformation and thermal diffusion process between dissimilar metals. The interfacial shear strength is very close to the Cu matrix strength, which is determined by the mixture of the mechanical bonding and metallurgical bonding. Several cracks exist on the shear fracture owing to the intermetallic compound in the interfacial solidifi cation structure and also the probable welding inclusion.
基金supported by the National Natural Science Foundation of China(51605251)Tsinghua University Initiative Scientific Research Program(2014Z05093).
文摘A new seam-tracking method based on dynamic trajectory planning for a mobile welding robot is proposed in order to improve the response lag of the mobile robot and the high frequency oscillation in seam-tracking.By using a front-placed laser-based vision sensor to dynamically extract the location of the weld seam in front of torch,the trend and direction of the weld line is roughly obtained.The robot system autonomously and dynamically performs trajectory planning based on the isometric approximation model.Arc sensor technology is applied to detect the offset during welding process in real time.The dynamic compensation of the weld path is done in combination with the control of the mobile robot and the executive body installed on it.Simulated and experimental results demonstrate that the method effectively increases the stability of welding speed and smoothness of the weld track,and hence the weld formation in curves and corners is improved.
文摘In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned according to three teaching points, which is lapped head on end to satisfy the requirement of technology. For the nipples wherever they are arranged radially or axially, even if there are errors caused by positioning and thermal deformations, providing that nipple's position and orientation relative to the teaching one can be measured, the multi path/multi layer circular locus can be planned without teaching any more. The algorithm has been applied in welding robot for manufacturing power station' boiler.
文摘In this paper, the method of experimental estimation of the temperature in a penetration channel in electron beam welding is described on the basis of chemical elements concentration in the vapors above welding zone. The temperature of a vapor-gas phase in the penetration channel is determined when equating calculated and experimental concentrations of the elements.
文摘The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.
文摘Predictive modelling for quality analysis becomes one of the most critical requirements for a continuous improvement of reliability, efficiency and safety of laser welding process. Accurate and effective model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured approach developed to design an effective artificial neural network based model for predicting the weld bead dimensional characteristic in laser overlap welding of low carbon galvanized steel. The modelling approach is based on the analysis of direct and interaction effects of laser welding parameters such as laser power, welding speed, laser beam diameter and gap on weld bead dimensional characteristics such as depth of penetration, width at top surface and width at interface. The data used in this analysis was derived from structured experimental investigations according to Taguchi method and exhaustive FEM based 3D modelling and simulation efforts. Using a factorial design, different neural network based prediction models were developed, implemented and evaluated. The models were trained and tested using experimental data, supported with the data generated by the 3D simulation. Hold-out test and k-fold cross validation combined to various statistical tools were used to evaluate the influence of the laser welding parameters on the performances of the models. The results demonstrated that the proposed approach resulted successfully in a consistent model providing accurate and reliable predictions of weld bead dimensional characteristics under variable welding conditions. The best model presents prediction errors lower than 7% for the three weld quality characteristics.
文摘To meet the demands of rapid development of pipeline constructions in China, a complete set of full automatic external welding machine for annular welds of pipeline and welding procedure have been developed thereof. The system has been applied in the “West East Pipeline Project” and its performance is proven. With this welding machine the welding parameters can be either preset before or adjusted in real time during the welding process, which avoids the blemishes of same type domestic and international products. Thus it is best propitious to in situ construction conditions and workers’ technical level in China. In this article the development of mechanical and control systems of this product is introduced and typical welding procedure parameters are provided.