A mathematical model of two-dimensional flows of PIM derived from the momentum, continuity equations and theheat transfer equation is obtained. The formula of calculating the flow conductance and the pressure equation...A mathematical model of two-dimensional flows of PIM derived from the momentum, continuity equations and theheat transfer equation is obtained. The formula of calculating the flow conductance and the pressure equation arededuced when the no slip boundary condition is employed at the wall, and the pressure equation is a non-linearelliptic partial differential equation. The flow front locations, distribution of velocities, temperature and pressure aresimulated by the finite element analysis software ANSYS. Simulation results indicate that it is in the final filled partthat defects appear easily. The region in which the defects may occur during the PIM process can be predicted.展开更多
Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that...Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that exist among different software.Here,a series of algorithms is developed and integrated in the Petrel2ANSYS to carry out two-way conversions between the 3D attribute models that employ corner-point grids used in Petrel and the 3D finite-element grids used in ANSYS.Furthermore,a modified method of simulating stress characteristics and analyzing stress fields using the finite-element method and multiple finely resolved 3D models is proposed.Compared to the traditional finite-element simulation-based approach,which involves describing the heterogeneous within a rock body or sedimentary facies in detail and simulating the stress distribution,the single grid cell-based approach focuses on a greater degree on combining the rock mechanics described by 3D corner-point grid models with the finely resolved material characteristics of 3D finite-element models.Different models that use structured and unstructured grids are verified in Petrel2ANSYS to assess the feasibility.In addition,with minor modifications,platforms based on the present algorithms can be extended to other models to convert corner-point grids to the finite-element grids constructed by other software.展开更多
This study utilizes ANSYS to establish FEM's model of metamorphic core complex,and used thermal-structure analysis to simulate metamorphic core complex's temperature field and stress field.The metamorphic core...This study utilizes ANSYS to establish FEM's model of metamorphic core complex,and used thermal-structure analysis to simulate metamorphic core complex's temperature field and stress field.The metamorphic core complex formation mechanism is discussed.The simulation results show that the temperature field change appearing as the earth surface's temperature is the lowest,and the temperature of metamorphic core complex's nucleus is the highest.The temperature field is higher along with depth increase,and the stress field change appearing as the biggest stress occurs in the nucleus.The next stress field occurs at the top of the cover.展开更多
文摘A mathematical model of two-dimensional flows of PIM derived from the momentum, continuity equations and theheat transfer equation is obtained. The formula of calculating the flow conductance and the pressure equation arededuced when the no slip boundary condition is employed at the wall, and the pressure equation is a non-linearelliptic partial differential equation. The flow front locations, distribution of velocities, temperature and pressure aresimulated by the finite element analysis software ANSYS. Simulation results indicate that it is in the final filled partthat defects appear easily. The region in which the defects may occur during the PIM process can be predicted.
基金Project(2017ZX05013002-002)supported by Major National Science and Technology Projects of ChinaProject(RIPED-2016-JS-276)supported by Petro-China Research Institute of Petroleum Exploration and Development
文摘Crustal stresses play an important role in both exploration and development in the oil and gas industry.However,it is difficult to simulate crustal stress distributions accurately,because of the incompatibilities that exist among different software.Here,a series of algorithms is developed and integrated in the Petrel2ANSYS to carry out two-way conversions between the 3D attribute models that employ corner-point grids used in Petrel and the 3D finite-element grids used in ANSYS.Furthermore,a modified method of simulating stress characteristics and analyzing stress fields using the finite-element method and multiple finely resolved 3D models is proposed.Compared to the traditional finite-element simulation-based approach,which involves describing the heterogeneous within a rock body or sedimentary facies in detail and simulating the stress distribution,the single grid cell-based approach focuses on a greater degree on combining the rock mechanics described by 3D corner-point grid models with the finely resolved material characteristics of 3D finite-element models.Different models that use structured and unstructured grids are verified in Petrel2ANSYS to assess the feasibility.In addition,with minor modifications,platforms based on the present algorithms can be extended to other models to convert corner-point grids to the finite-element grids constructed by other software.
文摘This study utilizes ANSYS to establish FEM's model of metamorphic core complex,and used thermal-structure analysis to simulate metamorphic core complex's temperature field and stress field.The metamorphic core complex formation mechanism is discussed.The simulation results show that the temperature field change appearing as the earth surface's temperature is the lowest,and the temperature of metamorphic core complex's nucleus is the highest.The temperature field is higher along with depth increase,and the stress field change appearing as the biggest stress occurs in the nucleus.The next stress field occurs at the top of the cover.