Concentrations of seventeen hazardous trace elements including As, Pb, Hg, Se, Cd, Cr, Co, Mo, Mn, Ni, U, V, Th, Be, Sb, Br and Zn in the No.ll coal seam, Antaibao surface mine, Shanxi Province were determined using I...Concentrations of seventeen hazardous trace elements including As, Pb, Hg, Se, Cd, Cr, Co, Mo, Mn, Ni, U, V, Th, Be, Sb, Br and Zn in the No.ll coal seam, Antaibao surface mine, Shanxi Province were determined using Instrumental Neutron Activation Analysis (INAA), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Cold-Vapor Atomic Absorption Spectrometry (CV-AAS) and Graphite Furnace Atomic Absorption Spectrometry (GF-AAS). Comparisons with average concentrations of trace elements in Chinese coal show that the concentrations of Hg and Cd in the No. 11 coal seam, Antaibao surface mine are much higher. They may be harmful to the environment in the process of utilization. The variations of the trace elements contents and pyritic suffur in vertical section indicated that: (a) the concentrations of As, Pb, Mn, and pyritic sulfur decrease from roof to floor; (b) the concentrations of Cr, Zn and Mo are higher in roof, floor and lower in coal seam; (c) the concentration of Br, Sb, and Hg are higher in coal seam and lower in roof and floor; (d) the concentrations of Mo, V, Th and AI vary consistently with the ash yield. Cluster analysis of trace elements, pyritic sulfur, ash yield and major elements, such as AI, Fe, P, Ca shows that: (a) pyritic sulfur, Fe, As, Mn, Ni, Be are closely associated and reflect the influence of pyrite; (b) Mo, Se, Pb, Cr, Th, Co, Ca and A! are related to clay mineral, which is the main source of ash; (c) U, Zn, V, Na, P maybe controlled by phosphate or halite; (d) Hg, Br, Sb and Cd may be mainly organic-associated elements which fall outside the three main groups. The concentration distribution characteristics of trace elements in coal seam and the cluster analysis of major and trace elements showed that the contents of trace elements in the No. 11 coal seam, Antaibao surface mine, are mainly controlled by detrital input and migration from roof and floor.展开更多
A seed germinating method was used to study soil seed banks in dump sites of the Antaibao opencast mine for soil reclamation and ecological rehabilitation. Based on a richness index, a diversity index and an evenness ...A seed germinating method was used to study soil seed banks in dump sites of the Antaibao opencast mine for soil reclamation and ecological rehabilitation. Based on a richness index, a diversity index and an evenness index, the diversity of species of soil seed banks was studied. As well, the progress of vegetation succession in this thoroughly destroyed ecosystem is discussed and the self-renewal ability of the soil seed banks is analyzed. The results indicate that 1) there are 17 plant species belonging to five families with annuals as the dominant species; 2) the soil seed banks at the dump site show great temporal and spatial heterogeneity and 3) the model of Robinia pseudoacacia x Pinus tabulaeformis × Caragana korshinskii in the anaphase is the best among several reclamation models studied. Therefore, with the extension of reclamation time, the correct choice of a reclamation model is quite helpful for the improvement of the self-renewal ability of soil seed banks and for the stability of the ecosystem, which is very important for land reclamation and ecological rehabilitation of the dump sites of the ATB opencast coal mine.展开更多
Based on the analyses of sulfur and 41 other elements in 8 channel samples of the No. 11 coal seam from Antaibao surface mine, Shanxi, China and 4 samples from the coal preparation plant of this mine, the distribution...Based on the analyses of sulfur and 41 other elements in 8 channel samples of the No. 11 coal seam from Antaibao surface mine, Shanxi, China and 4 samples from the coal preparation plant of this mine, the distribution of the elements in the seam profile, their geo-chemical partitioning behavior during the coal cleaning and the genetic relationships between the both are studied. The conclusions are drawn as follows. The coal-forming environment was probably invaded by sea water during the post-stage of peatification, which results in the fact that the contents of As, Fe, S, etc. associated closely with sea water tend to increase toward the top of the seam, and that the kaolinite changes into illite and montmorillonite in the coal-sublayer near the roof. These elements studied are dominantly associated with kaolinite, pyrite, illite, montmorillonite, etc., of which the As, Pb, Mn, Cs, Co, Ni, etc. are mainly associated with sulfides, the Mo, V, Nb, Hf, REEs, Ta etc. mainly with kaolintie, the Mg, Al etc. mainly with epigenetic montmorillonite, and the Rb, Cr, Ba, Cu, K, Hg, etc. mainly with epigenetic illite. The physical coal cleaning is not only effective in the removal of ash and sulfur, but also in reducing the concentra-tion of most major and trace elements. The elements Be, U, Sb, W, Br, Se, P, etc. are largely or partly organically bound showing a relatively low removability, while the removability of the other elements studied is more than 20%, of which the Mg, Mn, Hg, Fe, As, K, Al, Cs, and Cr associ-ated mostly with the coarser or epigenetic minerals show a higher removability than that of ash. The distribution of the elements in the seam profile controls their partitioning behavior to a great degree during the coal cleaning processes.展开更多
基金This research was supported by the National Natural Science Foundation of China (No. 90010017 and No. 40272071)the National Major Fundamental Research and Development Project (2006 CB200304).
文摘Concentrations of seventeen hazardous trace elements including As, Pb, Hg, Se, Cd, Cr, Co, Mo, Mn, Ni, U, V, Th, Be, Sb, Br and Zn in the No.ll coal seam, Antaibao surface mine, Shanxi Province were determined using Instrumental Neutron Activation Analysis (INAA), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Cold-Vapor Atomic Absorption Spectrometry (CV-AAS) and Graphite Furnace Atomic Absorption Spectrometry (GF-AAS). Comparisons with average concentrations of trace elements in Chinese coal show that the concentrations of Hg and Cd in the No. 11 coal seam, Antaibao surface mine are much higher. They may be harmful to the environment in the process of utilization. The variations of the trace elements contents and pyritic suffur in vertical section indicated that: (a) the concentrations of As, Pb, Mn, and pyritic sulfur decrease from roof to floor; (b) the concentrations of Cr, Zn and Mo are higher in roof, floor and lower in coal seam; (c) the concentration of Br, Sb, and Hg are higher in coal seam and lower in roof and floor; (d) the concentrations of Mo, V, Th and AI vary consistently with the ash yield. Cluster analysis of trace elements, pyritic sulfur, ash yield and major elements, such as AI, Fe, P, Ca shows that: (a) pyritic sulfur, Fe, As, Mn, Ni, Be are closely associated and reflect the influence of pyrite; (b) Mo, Se, Pb, Cr, Th, Co, Ca and A! are related to clay mineral, which is the main source of ash; (c) U, Zn, V, Na, P maybe controlled by phosphate or halite; (d) Hg, Br, Sb and Cd may be mainly organic-associated elements which fall outside the three main groups. The concentration distribution characteristics of trace elements in coal seam and the cluster analysis of major and trace elements showed that the contents of trace elements in the No. 11 coal seam, Antaibao surface mine, are mainly controlled by detrital input and migration from roof and floor.
基金Projects 40071077 and 40471132 supported by National Natural Science foundation of China
文摘A seed germinating method was used to study soil seed banks in dump sites of the Antaibao opencast mine for soil reclamation and ecological rehabilitation. Based on a richness index, a diversity index and an evenness index, the diversity of species of soil seed banks was studied. As well, the progress of vegetation succession in this thoroughly destroyed ecosystem is discussed and the self-renewal ability of the soil seed banks is analyzed. The results indicate that 1) there are 17 plant species belonging to five families with annuals as the dominant species; 2) the soil seed banks at the dump site show great temporal and spatial heterogeneity and 3) the model of Robinia pseudoacacia x Pinus tabulaeformis × Caragana korshinskii in the anaphase is the best among several reclamation models studied. Therefore, with the extension of reclamation time, the correct choice of a reclamation model is quite helpful for the improvement of the self-renewal ability of soil seed banks and for the stability of the ecosystem, which is very important for land reclamation and ecological rehabilitation of the dump sites of the ATB opencast coal mine.
文摘Based on the analyses of sulfur and 41 other elements in 8 channel samples of the No. 11 coal seam from Antaibao surface mine, Shanxi, China and 4 samples from the coal preparation plant of this mine, the distribution of the elements in the seam profile, their geo-chemical partitioning behavior during the coal cleaning and the genetic relationships between the both are studied. The conclusions are drawn as follows. The coal-forming environment was probably invaded by sea water during the post-stage of peatification, which results in the fact that the contents of As, Fe, S, etc. associated closely with sea water tend to increase toward the top of the seam, and that the kaolinite changes into illite and montmorillonite in the coal-sublayer near the roof. These elements studied are dominantly associated with kaolinite, pyrite, illite, montmorillonite, etc., of which the As, Pb, Mn, Cs, Co, Ni, etc. are mainly associated with sulfides, the Mo, V, Nb, Hf, REEs, Ta etc. mainly with kaolintie, the Mg, Al etc. mainly with epigenetic montmorillonite, and the Rb, Cr, Ba, Cu, K, Hg, etc. mainly with epigenetic illite. The physical coal cleaning is not only effective in the removal of ash and sulfur, but also in reducing the concentra-tion of most major and trace elements. The elements Be, U, Sb, W, Br, Se, P, etc. are largely or partly organically bound showing a relatively low removability, while the removability of the other elements studied is more than 20%, of which the Mg, Mn, Hg, Fe, As, K, Al, Cs, and Cr associ-ated mostly with the coarser or epigenetic minerals show a higher removability than that of ash. The distribution of the elements in the seam profile controls their partitioning behavior to a great degree during the coal cleaning processes.