Populus euphratica and Populuspruinosa, sister species in the Turanga Section (Salicaceae), growing in semi-arid saline areas are known for their high salinity tolerance. In this study, by combining growth level wit...Populus euphratica and Populuspruinosa, sister species in the Turanga Section (Salicaceae), growing in semi-arid saline areas are known for their high salinity tolerance. In this study, by combining growth level with Na+ and K+ contents, the expression level of vacuolar Na+/H+ antiporters was investigated for NaCl-induced changes in P. euphratica and t3. pru- inosa calli. Compared to R euphratica, P. pruinosa calli grew well in 200 mM NaC1 stress from 14. to 21 days. Increasing the stressed time caused an increase in Na+ content concomitant with a decrease in K+ content in P. euphratica calli, whereas, with the presence of 200 mM NaCI, K+ content has a less increase in 14 and 21 days than in 7 days which was detected in R pruinosa calli. The transcript levels of six genes coding for NHX-type Na+/H+ antiporters suggest that vacuolar NHX1-NHX6 antiporters play important roles in responding to salt stress in R pruinosa. Our data suggest that there exists a higher salt tolerance for P. pruinosa than P. euphratica at the cellular level, Na+ avoidance or accumulation is observed in cellular compartments, and that expression of NHX antiporters is linked to the accumulator phenotype.展开更多
Arabidopsis plastid antiporters KEA1 and KEA2are critical for plastid development, photosynthetic efficiency, and plant development.Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Geneti...Arabidopsis plastid antiporters KEA1 and KEA2are critical for plastid development, photosynthetic efficiency, and plant development.Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles(PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1(VSR1) subcellular localizations, VSR–cargo interactions, and p24 distribution on the endoplasmic reticulum(ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+homeostasis.展开更多
The plant NHX gene family encodes Na+/H+ antiporters which are crucial for salt tolerance, potassium homeostasis and cellular pH regulation. Understanding the role of NHX antiporters in membrane trafficking is becom...The plant NHX gene family encodes Na+/H+ antiporters which are crucial for salt tolerance, potassium homeostasis and cellular pH regulation. Understanding the role of NHX antiporters in membrane trafficking is becoming an increasingly interesting subject of study. Membrane trafficking is a central cellular process during which proteins, lipids and polysaccharides are continuously exchanged among membrane compartments. Yeast ScNhxlp, a prevacuole/ vacuolar Na+/H+ antiporter, plays an important role in regulating pH to control trafficking out of the endosome. Evidence begins to accumulate that plant NHX antiporters might function in regulating membrane trafficking in plants.展开更多
DL-3-n-butylphthalide(NBP)-a compound isolated from Apium graveolens seeds-is protective against brain ischemia via various mechanisms in humans and has been approved for treatment of acute ischemic stroke.NBP has sho...DL-3-n-butylphthalide(NBP)-a compound isolated from Apium graveolens seeds-is protective against brain ischemia via various mechanisms in humans and has been approved for treatment of acute ischemic stroke.NBP has shown recent potential as a treatment for Parkinson’s disease.However,the underlying mechanism of action of NBP remains poorly understood.In this study,we established a rat model of Parkinson’s disease by intraperitoneal injection of rotenone for 28 successive days,followed by intragastric injection of NBP for 14-28 days.We found that NBP greatly alleviated rotenone-induced motor disturbance in the rat model of Parkinson’s disease,inhibited loss of dopaminergic neurons and aggregation ofα-synuclein,and reduced iron deposition in the substantia nigra and iron content in serum.These changes were achieved by alterations in the expression of the iron metabolism-related proteins transferrin receptor,ferritin light chain,and transferrin 1.NBP also inhibited oxidative stress in the substantia nigra and protected mitochondria in the rat model of Parkinson’s disease.Our findings suggest that NBP alleviates motor disturbance by inhibition of iron deposition,oxidative stress,and ferroptosis in the substantia nigra.展开更多
The Na+/H+ antiport genes namedTaNHX1andTaNHX2were cloned by screening a salt_stressed wheat cDNA library using rice Na+/H+ antiport cDNA fragment as the probe. Sequencing analysis showed thatTaNHX1was 2 029 bp in le...The Na+/H+ antiport genes namedTaNHX1andTaNHX2were cloned by screening a salt_stressed wheat cDNA library using rice Na+/H+ antiport cDNA fragment as the probe. Sequencing analysis showed thatTaNHX1was 2 029 bp in length and contained a complete ORF of 1 638 bp. TheTaNHX1encodes a polypeptide of 546 amino acids with a transmembrane domain DIFFIYLLPPI.TaNHX2was 1 693 bp in length consisting of a partial ORF followed by a 3′_UTR of 808 bp. The amino acid sequence of these two genes were about 70% identical to the known NHX genes from rice, Arabidopsis and Atriplex. A RT_PCR assay showed that the level ofTaNHX1transcripts was increased and reached a steady higher level in the seedlings after 3 h treatment with 400 mmol/L NaCl.展开更多
[Objective] This study aimed to screen an Na+/H+ antiporter gene from the halophiles colonizing in the Dagong Ancient Brine Well in Zigong City, China, and then analyze the gene structure and properties of the prote...[Objective] This study aimed to screen an Na+/H+ antiporter gene from the halophiles colonizing in the Dagong Ancient Brine Well in Zigong City, China, and then analyze the gene structure and properties of the protein encoded by this gene. [Method] Metagenomic DNA libraries of halophiles from the Dagong Ancient Brine Well were used for screening genes with Na+/H+ antiporter activity in antiporter-defi- cient E. coil KNabc strain by functional complementation. Then the start codon, stop codon, ORF, -35 region, -10 region and SD sequence of Na~/H+ antiporter gene, as well as the molecular weight, isoelectric point, hydrophobic region, transmembrane domain, phyletic evolution and salt resistance of protein encoded by the gene were investigated. [Result] A new Na+/H+ antiporter gene m-nha was obtained, which ,ren- dered the antiporter-negative mutant E. coil KNabc cells with both the resistance to Na+ and the ability to grow under alkaline conditions. [Conclusion] The structure and amino acid sequence of M-Nha was different from the previously reported Na+/H~ antiporters, and the m-nha gene disclosed from the Dagong Ancient Brine Well was identified as a novel Na+/H+ antiporter gene. This study was significant not only in helping us understand the salt tolerance of halophiles in ancient brine wells and develop and utilize the genes resource, but also in exploring new salt-tolerant genes.展开更多
Populus euphratica Oliv. is of high salinity tolerance and used as a model species for investigating molecular mechanisms of trees' responses to salt stress. In the work presented here we found that calli of P. euphr...Populus euphratica Oliv. is of high salinity tolerance and used as a model species for investigating molecular mechanisms of trees' responses to salt stress. In the work presented here we found that calli of P. euphratica grew more rapidly and accumulated less Na+, but more K+, under salt stress than those of salt-sensitive poplar, Populus hopeiensis. Different types of Na+/H+ antiporters (SOS1, NhaD1 and NHX1) were isolated from P. euphratica; all of these genes have been shown to play important roles in plant salt tolerance mechanism in previous studies. Expression profiles of these three genes were compared between P. hopeiensis and P. euphratica in the presence and absence of salt stress by real-time PCR. The three genes were induced in both P. euphratica and P. hopeiensis by salt. Transcript levels of PeNHX1 were lower in P. euphratica than in P. hopeiensis under 150 mM NaCl stress. In addition, transcript levels of PeNhaD1 were lower, while PeSOS1 were higher in P. euphratica than in P. hopeiensis under both stressed and unstressed conditions. The results indicated that P. euphratica up-regulates different genes and consistently maintains both effluxes of Na+ and high K+ levels. Our data suggests that differences in gene expression patterns may contribute to the dif-ference in salt tolerance between these two poplars.展开更多
[ Objective] The study aimed to clone and identify Na^+/H^+ antiporter genes in maize, and provided the information for characterizing the function of such genes in abiotic stress tolerance of maize. Method The in ...[ Objective] The study aimed to clone and identify Na^+/H^+ antiporter genes in maize, and provided the information for characterizing the function of such genes in abiotic stress tolerance of maize. Method The in silico cloning, RT-PCR, and bioinformatics analysis were used in this study. Result By in sifico cloning, a plasma membrane Na^+/H^+ antiporter gene, named as ZmSOS1 (EMBL accession No. BN001309), was cloned from maize ( Zea mays L. ). ZmSOS1 has an open reading frame (ORF) of 3 411 bp which encoded a protein of 1 136 amino acids. By multiple sequence alignment analysis, it showed the predicated peptide of ZmSOS1 were 61% and 82% identities in amino acids to the plasma membrane Na^+/H^+ antiporter AtSOS1 and OsSOS1, respectively. The RT-PCR analysis revealed that ZmSOS1 could be significantly up-regulated by salt stress, which indicated ZmSOS1 might play a role in salt tolerance of maize. Conclusion ZmSOS1 is a putative plasma membrane Na^+/H^+ antiporter gene and may play a role in abiotic stress tolerance of maize.展开更多
Salinity is one of the most critical environmental problems, which causes plant growth retardation by disturbing intracellular ion homeostasis. The Na+/H+ antiporter plays an important role in resistance to salt stres...Salinity is one of the most critical environmental problems, which causes plant growth retardation by disturbing intracellular ion homeostasis. The Na+/H+ antiporter plays an important role in resistance to salt stress by sequestering Na+ in exchange for H+ across the vacuolar membranes. In the current study, the coding regions of two Arabidopsis antiporters (AtNHX1 and AtNHX2) and one rice antiporter (OsNHX1) were amplified by target specific PCR. PCR amplicons were first cloned into pENTR/D-TOPO and later recombined with a destination vector (pK7WG2.0) by LR reaction. Positive clones were selected by PCR, restriction digestion (RD) and sequencing. They were then transformed into Agrobacterium tumefaciens (LBA4404 strain) for subsequent transformation of farmer popular tomato varieties.展开更多
The iron chelator deferoxamine has been shown to inhibit ferroptosis in spinal cord injury.However,it is unclear whether deferoxamine directly protects neurons from ferroptotic cell death.By comparing the survival rat...The iron chelator deferoxamine has been shown to inhibit ferroptosis in spinal cord injury.However,it is unclear whether deferoxamine directly protects neurons from ferroptotic cell death.By comparing the survival rate and morphology of primary neurons and SH-SY5Y cells exposed to erastin,it was found that these cell types respond differentially to the duration and concentration of erastin treatment.Therefore,we studied the mechanisms of ferroptosis using primary cortical neurons from E16 mouse embryos.After treatment with 50μM erastin for 48 hours,reactive oxygen species levels increased,and the expression of the cystine/glutamate antiporter system light chain and glutathione peroxidase 4 decreased.Pretreatment with deferoxamine for 12 hours inhibited these changes,reduced cell death,and ameliorated cellular morphology.Pretreatment with the apoptosis inhibitor Z-DEVD-FMK or the necroptosis inhibitor necrostain-1 for 12 hours did not protect against erastin-induced ferroptosis.Only deferoxamine protected the primary cortical neurons from ferroptosis induced by erastin,confirming the specificity of the in vitro ferroptosis model.This study was approved by the Animal Ethics Committee at the Institute of Radiation Medicine of the Chinese Academy of Medical Sciences,China(approval No.DWLL-20180913)on September 13,2018.展开更多
Maize is one of the most important crops worldwide, but it suffers from salt stress when grown in saline-alkaline soil. There is therefore an urgent need to improve maize salt tolerance and crop yield. In this study, ...Maize is one of the most important crops worldwide, but it suffers from salt stress when grown in saline-alkaline soil. There is therefore an urgent need to improve maize salt tolerance and crop yield. In this study, the SsNHX1 gene of Suaeda salsa, which encodes a vacuolar membrane Na~+/H~+ antiporter, was transformed into the maize inbred line 18-599 by Agrobacterium-mediated transformation. Transgenic maize plants overexpressing the SsNHX1 gene showed less growth retardation when treated with an increasing NaCl gradient of up to 1%, indicating enhanced salt tolerance. The improved salt tolerance of transgenic plants was also demonstrated by a significantly elevated seed germination rate(79%) and a reduction in seminal root length inhibition. Moreover, transgenic plants under salt stress exhibited less physiological damage. SsNHX1-overexpressing transgenic maize accumulated more Na~+ and K~+ than wild-type(WT) plants particularly in the leaves, resulting in a higher ratio of K~+/Na~+ in the leaves under salt stress. This result revealed that the improved salt tolerance of SsNHX1-overexpressing transgenic maize plants was likely attributed to SsNHX1-mediated localization of Na~+ to vacuoles and subsequent maintenance of the cytosolic ionic balance. In addition, SsNHX1 overexpression also improved the drought tolerance of the transgenic maize plants, as rehydrated transgenic plants were restored to normal growth while WT plants did not grow normally after dehydration treatment. Therefore, based on our engineering approach, SsNHX1 represents a promising candidate gene for improving the salt and drought tolerance of maize and other crops.展开更多
[Objective] The aim was to investigate AtNHX1 gene transformation in Brassica napus L. mediated by Agrobacterium tumefaciens. [Method] By using Agrobacterium-mediated method and cre/lox plant expression vector,the tra...[Objective] The aim was to investigate AtNHX1 gene transformation in Brassica napus L. mediated by Agrobacterium tumefaciens. [Method] By using Agrobacterium-mediated method and cre/lox plant expression vector,the transformation of AtNHX1 gene of Na+/H+ antiporter in Brassica napus was studied. [Result] The regeneration rate of cotyledon with petiole was much higher than that of hypocotyl,thus,the cotyledon with petiole was selected as the recipient for transformation. After the cotyledon with petiole was soaked in bacterial solution (OD600=0.4) for 8-10 min,kanamycin-resistant green seeding percentage could reach 3.75%. [Conclusion] The PCR detection of kanamycin-resistant plants proved that NHX1 gene had been inserted into Brassica napus genome. And this research could provide a new way to improve the salt tolerance of Brassica napus.展开更多
Cation exchangers (CAXs) belong to the cation/Ca2+exchanger superfamily which have been extensively investigated in plant tonoplasts over the last decade. Recently, the roles of CAXs involved in heavy metal accumul...Cation exchangers (CAXs) belong to the cation/Ca2+exchanger superfamily which have been extensively investigated in plant tonoplasts over the last decade. Recently, the roles of CAXs involved in heavy metal accumulation and tolerance in plants have been studied for phytoremediation and food security. In this mini review, we summarize the roles of the Ca2+/H+ antiporter in Ca2+ signal transduction, maintaining ion homeostasis and sequestering heavy metals into the vacuole. Moreover, we present a possible role of the plasma membrane Ca2+/H+ antiporter in heavy metal detoxification.展开更多
Transgenic Nipponbare which over-expressed a Na+/H~ antiporter gene OsNHX1 was used to compare its growth performance, water status and photosynthetic efficiency with its wild type under varying salinity regimes. Chl...Transgenic Nipponbare which over-expressed a Na+/H~ antiporter gene OsNHX1 was used to compare its growth performance, water status and photosynthetic efficiency with its wild type under varying salinity regimes. Chlorophyll content, quantum yield and photosynthetic rate were measured to assess the impact of salinity stress on photosynthetic efficiency for transgenic and wild-type Nipponbare. Effects of salinity on water status and gas exchange to both lines were studied by measuring water use efficiency, instantaneous transpiration rate and stomatal conductance. Dry shoot weight and leaf area were determined after three months of growth to assess the impacts of salinity on the growth of those two lines. Our study showed that both lines were affected by salinity stress, however, the transgenic line showed higher photosynthetic efficiency, better utilization of water, and better growth due to low transpiration rate and stomatal conductance. Reduction of photosynthetic efficiency exhibited by the wild-type Nipponbare was correlated to its poor growth under salinity stress.展开更多
Sodium toxicity and potassium insufficient are important factors affecting the growth and development of soybean in saline soil. As the capacity of plants to maintain a high cytosolic, K^+/Na^+ ratio is the key dete...Sodium toxicity and potassium insufficient are important factors affecting the growth and development of soybean in saline soil. As the capacity of plants to maintain a high cytosolic, K^+/Na^+ ratio is the key determinant of tolerance under salt stress. The aims of the present study were to identify and analyse expression patterns of the soybean K^+ efflux antiporter(KEA) gene and Na^+/H^+ antiporter(NHX) gene family, and to explore their roles under abiotic stress. As a result, 12 soybean Gm KEAs genes and 10 soybean Gm NHXs genes were identified and analyzed from soybean genome. Interestingly, the novel soybean KEA gene Glyma16g32821 which encodes 11 transmembrane domains were extremely up-regulated and remained high level until 48 h in root after the excessive potassium treatment and lack of potassium treatment, respectively. The novel soybean NHX gene Glyma09g02130 which encodes 10 transmembrane domains were extremely up-regulated and remained high level until 48 h in root with Na Cl stress. Imaging of subcellular locations of the two new Glyma16g32821-GFP and Glyma09g02130-GFP fusion proteins indicated all plasma membrane localizations of the two novel soybean genes. The 3D structures indicated that the two soybean novel proteins Glyma09g02130(NHX) and Glyma16g32821(KEA) all belong to the cation/hydrogen antiporter family.展开更多
Na+/H+ antiporters play an important role in the salt tolerance of a wide variety of plants.Using the rapid amplification of cDNA ends method,a Na+/H+ antiporter gene (PeNHX1) was isolated from Populus euphratica.The ...Na+/H+ antiporters play an important role in the salt tolerance of a wide variety of plants.Using the rapid amplification of cDNA ends method,a Na+/H+ antiporter gene (PeNHX1) was isolated from Populus euphratica.The deduced amino acid sequence contained 528 amino acid residues with a conserved amiloride-binding domain (77LFFIYLLPPI86) and shared more than 68% identity with that of AtNHX1 from Arabidopsis thaliana.PeNHX1 can confer resistance to Na+,as well as Li+,to (EP432) an Escherichia coli strain deficient in both nhaA and nhaB,thus proving that it is a functional Na+/H+ antiporter.PeNHX1 expression profile in EP432 reflected pH independent manner.PeNHX1 expression was regulated by salt at the transcriptional level.Meanwhile,results demonstrated that transcripts of PeNHX1 in P.euphratica calli showed a salt dependent response,and thus provide a valuable tool for studying signaling and biochemical pathways involved in salt recognition and response in P.euphratica.展开更多
Salt stress contains osmotic and ionic stress, while iso-osmotic polyethylene glycol (PEG) has only osmotic stress. This study aimed to compare the different effects on the activity of H+-ATPase, proton pump and Na...Salt stress contains osmotic and ionic stress, while iso-osmotic polyethylene glycol (PEG) has only osmotic stress. This study aimed to compare the different effects on the activity of H+-ATPase, proton pump and Na+/H+antiport in Malus seedlings between osmotic and ionic stress. Species of salt tolerant Malus zumi, middle salt tolerant Malus xiaojinensis and salt sensitive Malus baccata were used as experimental materials. Malus seedlings were treated with NaCl and iso-osmotic PEG stress. The activity of H+-ATPase, proton pump and Na+/H+antiport of plasmolemma and tonoplast in Malus seedlings were obviously increased under salt stress, and those in salt-tolerant species increased more. Under the same NaCl concentration, the activity of H+-ATPase, proton pump and Na+/H+antiport of plasmolemma and tonoplast in salt-tolerant species were all obviously higher than those in salt-sensitive one. Higher Na+/H+antiport activity of plasmolemma and tonoplast in salt-tolerant species could help to extrude and compartmentalize sodium in roots under salt stress. The ascent rate of activity of H+-ATPase, proton pump and Na+/H+antiport in Malus seedlings under the three salt concentration stress was all obviously higher than that under the iso-osmotic PEG stress. It indicated that the sodium ion effect had more stimulation on the activity of H+-ATPase, proton pump and Na+/H+antiport in salt-tolerant species, and salt-tolerant species has higher capability of sodium extrusion and compartmentalization in roots and is therefore more salt tolerant.展开更多
1 Introduction Dunaliella Salina,which taxi Dunaliella,Volvocales,Chlorophyceae Chlorophyta,is unicell algae with double flagllum at top,and cup shaped chloroplast without cell wall.Dunaliella Salina is the most salt ...1 Introduction Dunaliella Salina,which taxi Dunaliella,Volvocales,Chlorophyceae Chlorophyta,is unicell algae with double flagllum at top,and cup shaped chloroplast without cell wall.Dunaliella Salina is the most salt tolerance eucaryotes.It can grow at the range of salt concentration展开更多
基金Financial support for this research was provided by the Program for New Century Excellent Talents in the Ministry of Education in China(NCET-09-0446),NSFC(31370396,30800865) and lzujbky-2012-k22 to YuXia Wu
文摘Populus euphratica and Populuspruinosa, sister species in the Turanga Section (Salicaceae), growing in semi-arid saline areas are known for their high salinity tolerance. In this study, by combining growth level with Na+ and K+ contents, the expression level of vacuolar Na+/H+ antiporters was investigated for NaCl-induced changes in P. euphratica and t3. pru- inosa calli. Compared to R euphratica, P. pruinosa calli grew well in 200 mM NaC1 stress from 14. to 21 days. Increasing the stressed time caused an increase in Na+ content concomitant with a decrease in K+ content in P. euphratica calli, whereas, with the presence of 200 mM NaCI, K+ content has a less increase in 14 and 21 days than in 7 days which was detected in R pruinosa calli. The transcript levels of six genes coding for NHX-type Na+/H+ antiporters suggest that vacuolar NHX1-NHX6 antiporters play important roles in responding to salt stress in R pruinosa. Our data suggest that there exists a higher salt tolerance for P. pruinosa than P. euphratica at the cellular level, Na+ avoidance or accumulation is observed in cellular compartments, and that expression of NHX antiporters is linked to the accumulator phenotype.
基金supported by the National Natural Science Foundation of China (NSFC)(31571464, 31371438, 31070222 to Quan-Sheng Qiu)the National Basic Research Program of China (973)project, 2013CB429904 to Quan-Sheng Qiu)+5 种基金the Research Fund for the Doctoral Program of Higher Education of China(RFDP)(20130211110001 to Quan-Sheng Qiu)Research Team of Stress Tolerance Mechanisms and Molecular Breeding of Plateau PlantsQinghai Province “Kunlun Talents·Advanced Innovative and Entrepreneurial Talents” Program (2022 to QuanSheng Qiu)the Qinghai Provincial Department of Science and Technology Qinghai basic research program (2022-ZJ-724 to Quan-Sheng Qiu)the Independent Research and Development Project of State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (202202 to Quan-Sheng Qiu)the Core Facility of School of Life Sciences,Lanzhou University。
文摘Arabidopsis plastid antiporters KEA1 and KEA2are critical for plastid development, photosynthetic efficiency, and plant development.Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles(PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1(VSR1) subcellular localizations, VSR–cargo interactions, and p24 distribution on the endoplasmic reticulum(ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+homeostasis.
基金supported by a grant from the National Natural Science Foundation of China (31070222 to Quan-Sheng Qiu)
文摘The plant NHX gene family encodes Na+/H+ antiporters which are crucial for salt tolerance, potassium homeostasis and cellular pH regulation. Understanding the role of NHX antiporters in membrane trafficking is becoming an increasingly interesting subject of study. Membrane trafficking is a central cellular process during which proteins, lipids and polysaccharides are continuously exchanged among membrane compartments. Yeast ScNhxlp, a prevacuole/ vacuolar Na+/H+ antiporter, plays an important role in regulating pH to control trafficking out of the endosome. Evidence begins to accumulate that plant NHX antiporters might function in regulating membrane trafficking in plants.
基金funded by the National Natural Science Foundation of China, No. 81873924 (to QQL), No. 82171190 (to GHW)Nantong Science and Technology Project of China, No. MS22021010 (to LHS)High-level Innovation and Entrepreneurship Talents Introduction Program of Jiangsu Province of China (to QQL)
文摘DL-3-n-butylphthalide(NBP)-a compound isolated from Apium graveolens seeds-is protective against brain ischemia via various mechanisms in humans and has been approved for treatment of acute ischemic stroke.NBP has shown recent potential as a treatment for Parkinson’s disease.However,the underlying mechanism of action of NBP remains poorly understood.In this study,we established a rat model of Parkinson’s disease by intraperitoneal injection of rotenone for 28 successive days,followed by intragastric injection of NBP for 14-28 days.We found that NBP greatly alleviated rotenone-induced motor disturbance in the rat model of Parkinson’s disease,inhibited loss of dopaminergic neurons and aggregation ofα-synuclein,and reduced iron deposition in the substantia nigra and iron content in serum.These changes were achieved by alterations in the expression of the iron metabolism-related proteins transferrin receptor,ferritin light chain,and transferrin 1.NBP also inhibited oxidative stress in the substantia nigra and protected mitochondria in the rat model of Parkinson’s disease.Our findings suggest that NBP alleviates motor disturbance by inhibition of iron deposition,oxidative stress,and ferroptosis in the substantia nigra.
文摘The Na+/H+ antiport genes namedTaNHX1andTaNHX2were cloned by screening a salt_stressed wheat cDNA library using rice Na+/H+ antiport cDNA fragment as the probe. Sequencing analysis showed thatTaNHX1was 2 029 bp in length and contained a complete ORF of 1 638 bp. TheTaNHX1encodes a polypeptide of 546 amino acids with a transmembrane domain DIFFIYLLPPI.TaNHX2was 1 693 bp in length consisting of a partial ORF followed by a 3′_UTR of 808 bp. The amino acid sequence of these two genes were about 70% identical to the known NHX genes from rice, Arabidopsis and Atriplex. A RT_PCR assay showed that the level ofTaNHX1transcripts was increased and reached a steady higher level in the seedlings after 3 h treatment with 400 mmol/L NaCl.
基金Supported by Chunhui Plan of Ministry of Education(Z2010101)Open Fund of Food Biotechnology Key Laboratory of Sichuan Province(SZJJ2009-014)Scientific Research Foundation of Xihua University(000022)~~
文摘[Objective] This study aimed to screen an Na+/H+ antiporter gene from the halophiles colonizing in the Dagong Ancient Brine Well in Zigong City, China, and then analyze the gene structure and properties of the protein encoded by this gene. [Method] Metagenomic DNA libraries of halophiles from the Dagong Ancient Brine Well were used for screening genes with Na+/H+ antiporter activity in antiporter-defi- cient E. coil KNabc strain by functional complementation. Then the start codon, stop codon, ORF, -35 region, -10 region and SD sequence of Na~/H+ antiporter gene, as well as the molecular weight, isoelectric point, hydrophobic region, transmembrane domain, phyletic evolution and salt resistance of protein encoded by the gene were investigated. [Result] A new Na+/H+ antiporter gene m-nha was obtained, which ,ren- dered the antiporter-negative mutant E. coil KNabc cells with both the resistance to Na+ and the ability to grow under alkaline conditions. [Conclusion] The structure and amino acid sequence of M-Nha was different from the previously reported Na+/H~ antiporters, and the m-nha gene disclosed from the Dagong Ancient Brine Well was identified as a novel Na+/H+ antiporter gene. This study was significant not only in helping us understand the salt tolerance of halophiles in ancient brine wells and develop and utilize the genes resource, but also in exploring new salt-tolerant genes.
基金NSFC (30800865, 40801001)the Education Ministry of China (NCET-05-0886)China Postdoctoral Science Foundation (20070420758)
文摘Populus euphratica Oliv. is of high salinity tolerance and used as a model species for investigating molecular mechanisms of trees' responses to salt stress. In the work presented here we found that calli of P. euphratica grew more rapidly and accumulated less Na+, but more K+, under salt stress than those of salt-sensitive poplar, Populus hopeiensis. Different types of Na+/H+ antiporters (SOS1, NhaD1 and NHX1) were isolated from P. euphratica; all of these genes have been shown to play important roles in plant salt tolerance mechanism in previous studies. Expression profiles of these three genes were compared between P. hopeiensis and P. euphratica in the presence and absence of salt stress by real-time PCR. The three genes were induced in both P. euphratica and P. hopeiensis by salt. Transcript levels of PeNHX1 were lower in P. euphratica than in P. hopeiensis under 150 mM NaCl stress. In addition, transcript levels of PeNhaD1 were lower, while PeSOS1 were higher in P. euphratica than in P. hopeiensis under both stressed and unstressed conditions. The results indicated that P. euphratica up-regulates different genes and consistently maintains both effluxes of Na+ and high K+ levels. Our data suggests that differences in gene expression patterns may contribute to the dif-ference in salt tolerance between these two poplars.
基金Supported by the Natural Science Foundation of the Department of Educationof Jiangsu Province(07KJD180168)the Doctoral ScienceStarting Foundation of Nantong UniversityAnd the Openning Subjectof Plant Functional Genomics Key Laboratory of Jiangsu Province~~
文摘[ Objective] The study aimed to clone and identify Na^+/H^+ antiporter genes in maize, and provided the information for characterizing the function of such genes in abiotic stress tolerance of maize. Method The in silico cloning, RT-PCR, and bioinformatics analysis were used in this study. Result By in sifico cloning, a plasma membrane Na^+/H^+ antiporter gene, named as ZmSOS1 (EMBL accession No. BN001309), was cloned from maize ( Zea mays L. ). ZmSOS1 has an open reading frame (ORF) of 3 411 bp which encoded a protein of 1 136 amino acids. By multiple sequence alignment analysis, it showed the predicated peptide of ZmSOS1 were 61% and 82% identities in amino acids to the plasma membrane Na^+/H^+ antiporter AtSOS1 and OsSOS1, respectively. The RT-PCR analysis revealed that ZmSOS1 could be significantly up-regulated by salt stress, which indicated ZmSOS1 might play a role in salt tolerance of maize. Conclusion ZmSOS1 is a putative plasma membrane Na^+/H^+ antiporter gene and may play a role in abiotic stress tolerance of maize.
文摘Salinity is one of the most critical environmental problems, which causes plant growth retardation by disturbing intracellular ion homeostasis. The Na+/H+ antiporter plays an important role in resistance to salt stress by sequestering Na+ in exchange for H+ across the vacuolar membranes. In the current study, the coding regions of two Arabidopsis antiporters (AtNHX1 and AtNHX2) and one rice antiporter (OsNHX1) were amplified by target specific PCR. PCR amplicons were first cloned into pENTR/D-TOPO and later recombined with a destination vector (pK7WG2.0) by LR reaction. Positive clones were selected by PCR, restriction digestion (RD) and sequencing. They were then transformed into Agrobacterium tumefaciens (LBA4404 strain) for subsequent transformation of farmer popular tomato varieties.
基金supported by the National Natural Science Foundation of China,Nos.81672171(to XY),81620108018(to SQF),81772342(to GZN)the State Key Laboratory of Medicinal Chemical Biology of Nankai University of China,No.2017027(to XY)
文摘The iron chelator deferoxamine has been shown to inhibit ferroptosis in spinal cord injury.However,it is unclear whether deferoxamine directly protects neurons from ferroptotic cell death.By comparing the survival rate and morphology of primary neurons and SH-SY5Y cells exposed to erastin,it was found that these cell types respond differentially to the duration and concentration of erastin treatment.Therefore,we studied the mechanisms of ferroptosis using primary cortical neurons from E16 mouse embryos.After treatment with 50μM erastin for 48 hours,reactive oxygen species levels increased,and the expression of the cystine/glutamate antiporter system light chain and glutathione peroxidase 4 decreased.Pretreatment with deferoxamine for 12 hours inhibited these changes,reduced cell death,and ameliorated cellular morphology.Pretreatment with the apoptosis inhibitor Z-DEVD-FMK or the necroptosis inhibitor necrostain-1 for 12 hours did not protect against erastin-induced ferroptosis.Only deferoxamine protected the primary cortical neurons from ferroptosis induced by erastin,confirming the specificity of the in vitro ferroptosis model.This study was approved by the Animal Ethics Committee at the Institute of Radiation Medicine of the Chinese Academy of Medical Sciences,China(approval No.DWLL-20180913)on September 13,2018.
基金supported by the National Natural Science Foundation of China(31561143014,30800687,31071434,and 31522041)the Major Project of Education Department of Sichuan Province,China(15ZA0022)
文摘Maize is one of the most important crops worldwide, but it suffers from salt stress when grown in saline-alkaline soil. There is therefore an urgent need to improve maize salt tolerance and crop yield. In this study, the SsNHX1 gene of Suaeda salsa, which encodes a vacuolar membrane Na~+/H~+ antiporter, was transformed into the maize inbred line 18-599 by Agrobacterium-mediated transformation. Transgenic maize plants overexpressing the SsNHX1 gene showed less growth retardation when treated with an increasing NaCl gradient of up to 1%, indicating enhanced salt tolerance. The improved salt tolerance of transgenic plants was also demonstrated by a significantly elevated seed germination rate(79%) and a reduction in seminal root length inhibition. Moreover, transgenic plants under salt stress exhibited less physiological damage. SsNHX1-overexpressing transgenic maize accumulated more Na~+ and K~+ than wild-type(WT) plants particularly in the leaves, resulting in a higher ratio of K~+/Na~+ in the leaves under salt stress. This result revealed that the improved salt tolerance of SsNHX1-overexpressing transgenic maize plants was likely attributed to SsNHX1-mediated localization of Na~+ to vacuoles and subsequent maintenance of the cytosolic ionic balance. In addition, SsNHX1 overexpression also improved the drought tolerance of the transgenic maize plants, as rehydrated transgenic plants were restored to normal growth while WT plants did not grow normally after dehydration treatment. Therefore, based on our engineering approach, SsNHX1 represents a promising candidate gene for improving the salt and drought tolerance of maize and other crops.
基金Supported by Key Project of Nanjing Xiaozhuang University(2007NXY01)Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (08KJD180011)College Student Practice and Innovation Training Program in Jiangsu Province(2009-2011)~~
文摘[Objective] The aim was to investigate AtNHX1 gene transformation in Brassica napus L. mediated by Agrobacterium tumefaciens. [Method] By using Agrobacterium-mediated method and cre/lox plant expression vector,the transformation of AtNHX1 gene of Na+/H+ antiporter in Brassica napus was studied. [Result] The regeneration rate of cotyledon with petiole was much higher than that of hypocotyl,thus,the cotyledon with petiole was selected as the recipient for transformation. After the cotyledon with petiole was soaked in bacterial solution (OD600=0.4) for 8-10 min,kanamycin-resistant green seeding percentage could reach 3.75%. [Conclusion] The PCR detection of kanamycin-resistant plants proved that NHX1 gene had been inserted into Brassica napus genome. And this research could provide a new way to improve the salt tolerance of Brassica napus.
基金supported by grants from the National Science Foundation of China (Grant No.20977084)the Natural Science Foundation of Zhejiang Province,China (Grant No. R507719)a Project of the National Key Basic Research and Development of China (Grant No. 2007CB109305)
文摘Cation exchangers (CAXs) belong to the cation/Ca2+exchanger superfamily which have been extensively investigated in plant tonoplasts over the last decade. Recently, the roles of CAXs involved in heavy metal accumulation and tolerance in plants have been studied for phytoremediation and food security. In this mini review, we summarize the roles of the Ca2+/H+ antiporter in Ca2+ signal transduction, maintaining ion homeostasis and sequestering heavy metals into the vacuole. Moreover, we present a possible role of the plasma membrane Ca2+/H+ antiporter in heavy metal detoxification.
基金funded by University Brunei Darussalam’s Graduate Research Scholarship
文摘Transgenic Nipponbare which over-expressed a Na+/H~ antiporter gene OsNHX1 was used to compare its growth performance, water status and photosynthetic efficiency with its wild type under varying salinity regimes. Chlorophyll content, quantum yield and photosynthetic rate were measured to assess the impact of salinity stress on photosynthetic efficiency for transgenic and wild-type Nipponbare. Effects of salinity on water status and gas exchange to both lines were studied by measuring water use efficiency, instantaneous transpiration rate and stomatal conductance. Dry shoot weight and leaf area were determined after three months of growth to assess the impacts of salinity on the growth of those two lines. Our study showed that both lines were affected by salinity stress, however, the transgenic line showed higher photosynthetic efficiency, better utilization of water, and better growth due to low transpiration rate and stomatal conductance. Reduction of photosynthetic efficiency exhibited by the wild-type Nipponbare was correlated to its poor growth under salinity stress.
基金supported by the National Natural Science Foundation of China(31401407)the Natural Science Foundation of Jiangsu Province,China(BK2012374)+1 种基金the Open Project of the State Key Laboratory of Crop Genetics and Germplasm Enhancement,China(ZW2013007)the Jiangsu Science and Technology Support Program,China(BE2013350)
文摘Sodium toxicity and potassium insufficient are important factors affecting the growth and development of soybean in saline soil. As the capacity of plants to maintain a high cytosolic, K^+/Na^+ ratio is the key determinant of tolerance under salt stress. The aims of the present study were to identify and analyse expression patterns of the soybean K^+ efflux antiporter(KEA) gene and Na^+/H^+ antiporter(NHX) gene family, and to explore their roles under abiotic stress. As a result, 12 soybean Gm KEAs genes and 10 soybean Gm NHXs genes were identified and analyzed from soybean genome. Interestingly, the novel soybean KEA gene Glyma16g32821 which encodes 11 transmembrane domains were extremely up-regulated and remained high level until 48 h in root after the excessive potassium treatment and lack of potassium treatment, respectively. The novel soybean NHX gene Glyma09g02130 which encodes 10 transmembrane domains were extremely up-regulated and remained high level until 48 h in root with Na Cl stress. Imaging of subcellular locations of the two new Glyma16g32821-GFP and Glyma09g02130-GFP fusion proteins indicated all plasma membrane localizations of the two novel soybean genes. The 3D structures indicated that the two soybean novel proteins Glyma09g02130(NHX) and Glyma16g32821(KEA) all belong to the cation/hydrogen antiporter family.
基金Financial support for this research was provided by NSFC (30800865)China Postdoctoral Science Foundation (200704207)
文摘Na+/H+ antiporters play an important role in the salt tolerance of a wide variety of plants.Using the rapid amplification of cDNA ends method,a Na+/H+ antiporter gene (PeNHX1) was isolated from Populus euphratica.The deduced amino acid sequence contained 528 amino acid residues with a conserved amiloride-binding domain (77LFFIYLLPPI86) and shared more than 68% identity with that of AtNHX1 from Arabidopsis thaliana.PeNHX1 can confer resistance to Na+,as well as Li+,to (EP432) an Escherichia coli strain deficient in both nhaA and nhaB,thus proving that it is a functional Na+/H+ antiporter.PeNHX1 expression profile in EP432 reflected pH independent manner.PeNHX1 expression was regulated by salt at the transcriptional level.Meanwhile,results demonstrated that transcripts of PeNHX1 in P.euphratica calli showed a salt dependent response,and thus provide a valuable tool for studying signaling and biochemical pathways involved in salt recognition and response in P.euphratica.
基金the financial support from the National Natural Science Foundation of China (39740027)the Special Fund for Agro-Scientific Research in the Public Interest of China (201203075)
文摘Salt stress contains osmotic and ionic stress, while iso-osmotic polyethylene glycol (PEG) has only osmotic stress. This study aimed to compare the different effects on the activity of H+-ATPase, proton pump and Na+/H+antiport in Malus seedlings between osmotic and ionic stress. Species of salt tolerant Malus zumi, middle salt tolerant Malus xiaojinensis and salt sensitive Malus baccata were used as experimental materials. Malus seedlings were treated with NaCl and iso-osmotic PEG stress. The activity of H+-ATPase, proton pump and Na+/H+antiport of plasmolemma and tonoplast in Malus seedlings were obviously increased under salt stress, and those in salt-tolerant species increased more. Under the same NaCl concentration, the activity of H+-ATPase, proton pump and Na+/H+antiport of plasmolemma and tonoplast in salt-tolerant species were all obviously higher than those in salt-sensitive one. Higher Na+/H+antiport activity of plasmolemma and tonoplast in salt-tolerant species could help to extrude and compartmentalize sodium in roots under salt stress. The ascent rate of activity of H+-ATPase, proton pump and Na+/H+antiport in Malus seedlings under the three salt concentration stress was all obviously higher than that under the iso-osmotic PEG stress. It indicated that the sodium ion effect had more stimulation on the activity of H+-ATPase, proton pump and Na+/H+antiport in salt-tolerant species, and salt-tolerant species has higher capability of sodium extrusion and compartmentalization in roots and is therefore more salt tolerant.
基金supported by Natioal Natural Science Foundation of China(40772065)the Open project from the key lab of saline lake resources and environments,MLR (2010-SYS-06)
文摘1 Introduction Dunaliella Salina,which taxi Dunaliella,Volvocales,Chlorophyceae Chlorophyta,is unicell algae with double flagllum at top,and cup shaped chloroplast without cell wall.Dunaliella Salina is the most salt tolerance eucaryotes.It can grow at the range of salt concentration