期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
不同碳源条件下污水生物脱氮过程中N_2O的释放规律 被引量:4
1
作者 刘国华 庞毓敏 +2 位作者 范强 蒋松竹 王洪臣 《环境保护科学》 CAS 2016年第1期90-94,共5页
以3类常用的碳源(乙酸钠、葡萄糖和甲醇)为研究对象,在3个稳定运行的SBR系统内考察了碳源种类对污水生物脱氮过程中N_2O释放的影响。结果显示,各系统内N_2O的释放主要发生在好氧硝化阶段,且在以乙酸钠为碳源的系统内氨氧化速率最快,TN... 以3类常用的碳源(乙酸钠、葡萄糖和甲醇)为研究对象,在3个稳定运行的SBR系统内考察了碳源种类对污水生物脱氮过程中N_2O释放的影响。结果显示,各系统内N_2O的释放主要发生在好氧硝化阶段,且在以乙酸钠为碳源的系统内氨氧化速率最快,TN去除率最大,但同时N_2O的释放速率、累积释放量(4.44 mg)和转化率(1.3%)也最大。而以甲醇为碳源的小试系统脱氮效果较差,TN去除率仅为59.5%,但N_2O的释放速率、累积释放量和转化率均最低。在实际污水处理过程中,当以温室气体N_2O释放作为判断标准时,此研究结果可为碳源的选择提供依据。 展开更多
关键词 污水生物脱氮 N_2O 碳源 好氧段 aob反硝化
下载PDF
厌氧氨氧化技术研究与应用反差现象归因 被引量:1
2
作者 郝晓地 杨万邦 +1 位作者 李季 朱洋墨 《环境科学学报》 CAS CSCD 北大核心 2023年第9期1-13,共13页
厌氧氨氧化(ANAMMOX)因无需氧气和有机物而被视为可持续污水处理技术,以致学界对其研究趋之若鹜并愈演愈烈.然而,20多年过去了,过热的研究与少有的工程应用形成了巨大反差,这一现象耐人寻味.因此,有必要对产生这种反差现象的原因进行理... 厌氧氨氧化(ANAMMOX)因无需氧气和有机物而被视为可持续污水处理技术,以致学界对其研究趋之若鹜并愈演愈烈.然而,20多年过去了,过热的研究与少有的工程应用形成了巨大反差,这一现象耐人寻味.因此,有必要对产生这种反差现象的原因进行理性分析,以期获得对ANAMMOX技术工程应用场景以及运行瓶颈的清晰信息.分析表明,ANAMMOX工程化步履蹒跚的主要原因为应用场景误区与运行控制难度.ANAMMOX技术定位于高氨氮(NH_(4)^(+))、低有机物(COD)浓度厌氧消化液或类似工业废水,即属于应用场景较小的小众技术.再者,实现ANAMMOX的关键是前端与之匹配的亚硝酸氮(NO_(2)^(-))积累,而这恰恰成为其运行成败的关键.尽管存在着多种让NO_(2)^(-)积累的方法,但实现其稳定运行最后均归结为精准的控制技术,因为ANAMMOX本身以及NO_(2)^(-)积累所需要的环境窗口均十分狭窄.另一方面,ANAMMOX过程本身并不产生强温室气体-氧化亚氮(N_(2)O,温室效应为CO_(2)的265倍),但无论是短程硝化(PN)还是短程反硝化(PD)均涉及N_(2)O释放且量并不低,这就让原本可持续的ANAMMOX工艺蒙上了应用阴影.因此,对ANAMMOX的研究应适当降温,即使是针对性的应用场景也应重新评估其碳排放问题. 展开更多
关键词 厌氧氨氧化(ANAMMOX) 短程硝化(PN) 短程硝化(PD) 控制技术 氧化亚氮(N_(2)O) aob同步亚硝化及其硝化
原文传递
污水处理过程N_(2)O排放:过程机制与控制策略 被引量:9
3
作者 郝晓地 杨振理 +1 位作者 于文波 刘然彬 《环境科学》 EI CAS CSCD 北大核心 2023年第2期1163-1173,共11页
污水处理生物脱氮过程中氧化亚氮(N_(2)O)作为直接碳排放源,其大气升温效应较CO_(2)高出265倍.因此,国际上对N_(2)O排放机制与控制策略的研究层出不穷.N_(2)O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝... 污水处理生物脱氮过程中氧化亚氮(N_(2)O)作为直接碳排放源,其大气升温效应较CO_(2)高出265倍.因此,国际上对N_(2)O排放机制与控制策略的研究层出不穷.N_(2)O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途径,以及硝化过程中间产物NH_(2)OH与NOH之非生物化学途径.常规硝化与反硝化(AOB+HDN)途径在正常运行工况下N_(2)O排放量并不是很大,约只占进水TN负荷的1.3%;即使是HN-AD与COMAMMOX代谢过程,两者N_(2)O产生量也不足TN负荷的0.5%.不可忽视的是AOB亚硝化及其同步反硝化,它们已被确认为是污水处理生物脱氮过程中N_(2)O排放的首要途径;AOB过程中间产物(NH_(2)OH与NOH)非生物化学过程以及AOB反硝化生物过程(主途径)共同导致的N_(2)O排放量可高达TN负荷的13.3%,主要是因为硝化过程溶解氧(DO)受限引起NO^(-)_(2)积累所诱发的AOB反硝化过程.需要特别注意的是,污水处理过程进水碳源不足而导致的HDN反硝化进行不完全情形,这会让NO^(-)_(3)反硝化止步于N_(2)O,致N_(2)O积累,其释放量可高达TN负荷的30%.此外,污泥絮凝体内部同步硝化/反硝化(SND)现象也是N_(2)O不容忽视的产生源,其释放量可高达TN负荷的7.7%,产生根源实际上是AOB反硝化.污水处理生物脱氮过程中为防止N_(2)O产生,应着力促进HDN反硝化进行完全和避免AOB反硝化过程.为此,运行过程中应控制曝气池中DO处于正常水平(~2 mg·L^(-1)),并尽可能延长污泥龄■,以避免AOB亚硝化积累NO^(-)_(2)并诱发AOB反硝化出现;同时,应及时补充进水碳源,以促进HDN反硝化进行完全至终点——N_(2).综述总结生物脱氮过程中涉及N_(2)O产生的所有机制,并根据过程机制讨论对其运行控制的策略. 展开更多
关键词 生物脱氮 碳排放 氧化亚氮(N_(2)O) 硝化/硝化 aob同步亚硝化及其硝化 同步硝化/硝化(SND)
原文传递
废水生物脱氮过程中N_(2)O排放数学模型研究进展
4
作者 陈诗 彭来 +2 位作者 徐一峰 梁川州 倪丙杰 《环境工程》 CAS CSCD 北大核心 2022年第6期97-106,122,共11页
氧化亚氮(N_(2)O)的温室效应比CO_(2)强265倍,可从废水生物脱氮过程中产生并直接排放,如果不对其加以控制,会显著增加污水处理厂的碳足迹。N_(2)O排放的数学建模对于深入解析N_(2)O产生机制、量化N_(2)O排放、优化生物脱氮工艺和制定N_(... 氧化亚氮(N_(2)O)的温室效应比CO_(2)强265倍,可从废水生物脱氮过程中产生并直接排放,如果不对其加以控制,会显著增加污水处理厂的碳足迹。N_(2)O排放的数学建模对于深入解析N_(2)O产生机制、量化N_(2)O排放、优化生物脱氮工艺和制定N_(2)O减排策略具有重要意义。结合当前国内外研究现状,阐述了废水生物脱氮过程中N_(2)O产生机制;归纳了基于不同机制建立的N_(2)O数学模型,包括氨氧化细菌(ammonia-oxidizing bacteria,AOB)经过羟胺氧化途径和AOB反硝化途径产生N_(2)O模型、异养反硝化途径产生N_(2)O模型以及耦合AOB和异养反硝化细菌产生N_(2)O模型;总结了新型生物脱氮系统N_(2)O模型,实际工程应用情况及校准N_(2)O数学模型中存在的问题;并对今后N_(2)O数学模型的研究方向进行了展望。 展开更多
关键词 数学模型 N_(2)O 羟胺氧化 aob反硝化 异养硝化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部