In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical qualit...In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical quality factor or optical signal-to-noise ratio,has a complex time-varying process,along with the interactions of the other lightpath state parameters(LSPs),such as transmit power,chromatic dispersion,polarization mode dispersion.Current studies are mostly focused on lightpath QoT estimation,but ignoring lightpath-level data analytics.In this case,our article proposes a novel lightpath performance analysis method considering recurrence plot(RP)and cross recurrence plot(CRP).Firstly,we give a detailed interpretation on the recurrence patterns of LSPs via a qualitative 2-D RP representation and its quantitative measure.It can potentially enable the accurate and fast lightpath failure detection with a low computational burden.On the other hand,CRP is devoted to modeling the relationships between lightpath QoT and LSPs,and the correlation degree is determined by a geometric mean of multiple indexes of cross recurrence quantification analysis.From the view of application,such CRP analysis can provide the effective knowledge sharing to guarantee more credible QoT prediction.Extensive experiments on a real-world optical network dataset have clearly demonstrated the effectiveness of our proposal.展开更多
As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model...As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.展开更多
The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) io...The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) ions in OIHMHs is primarily confined to the low energy region,resulting in yellow or red emissions.To date,there are few reports about green emission of Sb^(3+)-doped OIHMHs.Here,we present a novel approach for regulating the luminescence of Sb^(3+) ions in 0D C_(10)H_(2)_(2)N_(6)InCl_(7)·H_(2)O via hydrogen bond network,in which water molecules act as agents for hydrogen bonding.Sb^(3+)-doped C_(10)H_(2)2N_(6)InCl_(7)·H_(2)O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield(PLQY)of 80%.It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons(STEs).Upon removal of water molecules with heat,C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7) generates yellow emis-sion,attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.Once water molecules are adsorbed by C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7),it can subsequently emit green light.This water-induced reversible emission switching is successfully used for optical security and information encryption.Our findings expand the under-standing of how the local coordination structure influences the photophysical mechanism in Sb^(3+)-doped metal halides and provide a novel method to control the STEs emission.展开更多
Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate la...Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate laser diodes at 155Mb/s (STM-1),622Mb/s (STM-4) with adjustable modulation current from 0 to 50mA for an equivalent 50Ω load.The maximum modulation voltage is over 2.5V pp corresponding to a 3V DC bias for output stage.The time range of rise and fall from 360ps to 471ps is measured from the output voltage pulse.The RMS jitter is no more than 30ps for four bit rates.The power consumption is less than 410mW under a power supply voltage of 5V.According to the experimental results,the laser diode driver achieves the same level as their counterparts worldwide.展开更多
In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical...In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.展开更多
The fifth generation(5G) of mobile communications are facing big challenges, due to the proliferation of diversified terminals and unprecedented services such as internet of things(IoT), high-definition videos, virtua...The fifth generation(5G) of mobile communications are facing big challenges, due to the proliferation of diversified terminals and unprecedented services such as internet of things(IoT), high-definition videos, virtual/augmented reality(VR/AR). To accommodate massive connections and astonish mobile traffic, an efficient 5G transport network is required. Optical transport network has been demonstrated to play an important role for carrying 5G radio signals. This paper focuses on the future challenges, recent studies and potential solutions for the 5G flexible optical transport networks with the performances on large-capacity, low-latency and high-efficiency. In addition, we discuss the technology development trends of the 5G transport networks in terms of the optical device, optical transport system, optical switching, and optical networking. Finally, we conclude the paper with the improvement of network intelligence enabled by these technologies to deterministic content delivery over 5G optical transport networks.展开更多
Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance ...Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance for studying the survivability of optical networks. Firstly, a three-channel network model is established and analyzing common alarm data, the fault monitoring points and common fault points are carried out. The artificial neural network is introduced into the fault location field of OTN and it is used to judge whether the possible fault point exists or not. But one of the obvious limitations of general neural networks is that they receive a fixedsize vector as input and produce a fixed-size vector as the output. Not only that, these models is even fixed for mapping operations (for example, the number of layers in the model). The difference between the recurrent neural network and general neural networks is that it can operate on the sequence. In spite of the fact that the gradient disappears and the gradient explodes still exist in the neural network, the method of gradient shearing or weight regularization is adopted to solve this problem, and choose the LSTM (long-short term memory networks) to locate the fault. The output uses the concept of membership degree of fuzzy theory to express the possible fault point with the probability from 0 to 1. Priority is given to the treatment of fault points with high probability. The concept of F-Measure is also introduced, and the positioning effect is measured by using location time, MSE and F-Measure. The experiment shows that both LSTM and BP neural network can locate the fault of optical transport network well, but the overall effect of LSTM is better. The localization time of LSTM is shorter than that of BP neural network, and the F1-score of LSTM can reach 0.961566888396156 after 45 iterations, which meets the accuracy and real-time requirements of fault location. Therefore, it has good application prospect and practical value to introduce neural network into the fault location field of optical transport network.展开更多
AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segment...AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data.展开更多
Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO n...Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.展开更多
Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high paralleliz...Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing.展开更多
In this paper, we investigate the link resource management problem for optical networks, to achieve the resource cost during the information transmission. We use the differential game to formulate the cost control pro...In this paper, we investigate the link resource management problem for optical networks, to achieve the resource cost during the information transmission. We use the differential game to formulate the cost control problem for the link resource management, to minimize the resource allocation cost functions, which dynamic behaviours are described by differential equations. Each link controls its transmission bandwidth based on the Nash equilibriums of the differential game. The effectiveness of the proposed model is given through numerical simulations.展开更多
A behavior model for the receiver of the Ethernet passive optical network(EPON) is presented. The model consists of a fiber, a photodetector, a transimpedance amplifier (TIA) followed by a limiting amplifier and a...A behavior model for the receiver of the Ethernet passive optical network(EPON) is presented. The model consists of a fiber, a photodetector, a transimpedance amplifier (TIA) followed by a limiting amplifier and a clock and data recovery' circuit (CDR). Each sub-model is constructed based on the architecture of a circuit. The noise and jitter in each block such as shot noise, thermal noise, deterministic and random jitter are also considered. The performance of the whole receiver can be evaluated by the simulation of the behavior model, which is faster than the ordinary circuit model and more accurate than the analytical model. The whole model is implemented with C ++ and simulated in Microsoft Visual C ++ 6. 0. Using the Monte Carlo method, the EPON receiver is simulated. The simulation results show a good agreement with experimental ones.展开更多
National R&D activities on optical switching networkare introduced. Optical switching network testbedswere established in China including 3T-net andOBS ring and mesh network test-bed with the supportof national ...National R&D activities on optical switching networkare introduced. Optical switching network testbedswere established in China including 3T-net andOBS ring and mesh network test-bed with the supportof national '863' program. As an importantmodule in OPS network, a novel all-optical serialmulticast mode is discussed.展开更多
This paper presents the design and implementation of access controller used for Ethernet passive optical network ( EPON). As a first step to develop an ASIC product, the entire system is designed on a field programm...This paper presents the design and implementation of access controller used for Ethernet passive optical network ( EPON). As a first step to develop an ASIC product, the entire system is designed on a field programmable gate array (FPGA) with an embedded CPU. To reduce working frequency of the FPGA, the byte-to-word conversion is proposed. Propagation delays are equalized by ranging procedure so as to avoid data collision. Implementations of synchronization, classification, as well as Linux porting are illustrated in detail. The interface between the FPGA and CPU are also presented. Experimental results show that the proposed system can properly function in a relatively low cost FPGA.展开更多
By adjusting the waveguide length ratio, we study the extraordinary characteristics of electromagnetic waves propagating in one-dimensional(1D) parity-time-symmetric(PT-symmetric) two-segment-connected triangular opti...By adjusting the waveguide length ratio, we study the extraordinary characteristics of electromagnetic waves propagating in one-dimensional(1D) parity-time-symmetric(PT-symmetric) two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios respectively. It is found that the number and the corresponding frequencies of the extremum spontaneous PT-symmetric breaking points are dependent on the waveguide length ratio. Near the extremum breaking points, ultrastrong extraordinary transmissions are created and the maximal can arrive at, respectively, 2.4079 × 10^14 and 4.3555 × 10^13 in both kinds of networks. However, bidirectional invisibility can only be produced by the networks with broken integer waveguide length ratio, whose mechanism is explained in detail from the perspective of photonic band structure. The findings of this work can be useful optical characteristic control in the fabrication of PT-symmetric optical waveguide networks, which possesses great potential in designing optical amplifiers,optical energy saver devices, and special optical filters.展开更多
Optical network is the infrastructure of telecommunicationnetwork. More than 95% of information istransported over optical network in China, wherecore network is the main trunk. How to increase thebit rate of the sing...Optical network is the infrastructure of telecommunicationnetwork. More than 95% of information istransported over optical network in China, wherecore network is the main trunk. How to increase thebit rate of the single wavelength channel, raise thetotal capacity of the DWDM system, extend theoptical transportation distance of electrical repeaterfree of the DWDM system and optical network intelligenceare key problems demanding high attention.The evolution trend of the optical core network isdescribed with some examples in this paper.展开更多
Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for ...Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for SDONs include software-defined optical transmission, switching, and networking. The main features include control and transport separation, hard-ware universalization, protocol standardization, controllable optical network, and flexible optical network applications. This paper introduces software defined optical networks and its innovation environment, in terms of network architecture, protocol extension solution, experiment platform and typical applications. Batch testing has been conducted to evaluate the performance of this SDON testbed. The results show that the SDON testbed has good scalability in different sizes. Meanwhile, we notice that controller output bandwidth has great influence on lightpath setup delay.展开更多
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-malignant and neoplastic polyps.Although technologies for image-enhanced e...Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-malignant and neoplastic polyps.Although technologies for image-enhanced endoscopy are widely available,optical diagnosis has not been incorporated into routine clinical practice,mainly due to significant inter-operator variability.In recent years,there has been a growing number of studies demonstrating the potential of convolutional neural networks(CNN)to enhance optical diagnosis of polyps.Data suggest that the use of CNNs might mitigate the inter-operator variability amongst endoscopists,potentially enabling a“resect and discard”or“leave in”strategy to be adopted in real-time.This would have significant financial benefits for healthcare systems,avoid unnecessary polypectomies of non-neoplastic polyps and improve the efficiency of colonoscopy.Here,we review advances in CNN for the optical diagnosis of colorectal polyps,current limitations and future directions.展开更多
New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and hete...New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.展开更多
基金supported in part by the Science and Technology Project of Hebei Education Department,Grant ZD2021088in part by the S&T Major Project of the Science and Technology Ministry of China,Grant 2017YFE0135700。
文摘In future optical transport networks,lightpath performance analysis is of great practical significance for fully automated management.In general,the quality of transmission(QoT)of lightpaths,measured by optical quality factor or optical signal-to-noise ratio,has a complex time-varying process,along with the interactions of the other lightpath state parameters(LSPs),such as transmit power,chromatic dispersion,polarization mode dispersion.Current studies are mostly focused on lightpath QoT estimation,but ignoring lightpath-level data analytics.In this case,our article proposes a novel lightpath performance analysis method considering recurrence plot(RP)and cross recurrence plot(CRP).Firstly,we give a detailed interpretation on the recurrence patterns of LSPs via a qualitative 2-D RP representation and its quantitative measure.It can potentially enable the accurate and fast lightpath failure detection with a low computational burden.On the other hand,CRP is devoted to modeling the relationships between lightpath QoT and LSPs,and the correlation degree is determined by a geometric mean of multiple indexes of cross recurrence quantification analysis.From the view of application,such CRP analysis can provide the effective knowledge sharing to guarantee more credible QoT prediction.Extensive experiments on a real-world optical network dataset have clearly demonstrated the effectiveness of our proposal.
基金Supported by the National Key Research and Development Program of China(No.2021YFB2401204)。
文摘As edge computing services soar,the problem of resource fragmentation situation is greatly worsened in elastic optical networks(EON).Aimed to solve this problem,this article proposes the fragmentation prediction model that makes full use of the gate recurrent unit(GRU)algorithm.Based on the fragmentation prediction model,one virtual optical network mapping scheme is presented for edge computing driven EON.With the minimum of fragmentation degree all over the whole EON,the virtual network mapping can be successively conducted.Test results show that the proposed approach can reduce blocking rate,and the supporting ability for virtual optical network services is greatly improved.
基金National Natural Science Foundation of China(11974063)Graduate research innovation project,School of Optoelectronic Engineering,Chongqing University(GDYKC2023002)+1 种基金Fundamental Research Funds for the Central Universities(2022CDJQY-010)The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project no.(IFKSUOR3-073-9).
文摘The Sb^(3+) doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides(OIHMHs).However,the emission of Sb^(3+) ions in OIHMHs is primarily confined to the low energy region,resulting in yellow or red emissions.To date,there are few reports about green emission of Sb^(3+)-doped OIHMHs.Here,we present a novel approach for regulating the luminescence of Sb^(3+) ions in 0D C_(10)H_(2)_(2)N_(6)InCl_(7)·H_(2)O via hydrogen bond network,in which water molecules act as agents for hydrogen bonding.Sb^(3+)-doped C_(10)H_(2)2N_(6)InCl_(7)·H_(2)O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield(PLQY)of 80%.It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons(STEs).Upon removal of water molecules with heat,C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7) generates yellow emis-sion,attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.Once water molecules are adsorbed by C_(10)H_(2)_(2)N_(6)In_(1-x)Sb_(x)Cl_(7),it can subsequently emit green light.This water-induced reversible emission switching is successfully used for optical security and information encryption.Our findings expand the under-standing of how the local coordination structure influences the photophysical mechanism in Sb^(3+)-doped metal halides and provide a novel method to control the STEs emission.
文摘Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate laser diodes at 155Mb/s (STM-1),622Mb/s (STM-4) with adjustable modulation current from 0 to 50mA for an equivalent 50Ω load.The maximum modulation voltage is over 2.5V pp corresponding to a 3V DC bias for output stage.The time range of rise and fall from 360ps to 471ps is measured from the output voltage pulse.The RMS jitter is no more than 30ps for four bit rates.The power consumption is less than 410mW under a power supply voltage of 5V.According to the experimental results,the laser diode driver achieves the same level as their counterparts worldwide.
基金supported by the National Natural Science Foundation of China(NSFC)(62125503,62261160388)the Natural Science Foundation of Hubei Province of China(2023AFA028)the Innovation Project of Optics Valley Laboratory(OVL2021BG004).
文摘In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.
基金supported by the National Nature Science Foundation of China Projects(No.61871051,61771073)the Nature Science Foundation of Beijing project(No.4192039)
文摘The fifth generation(5G) of mobile communications are facing big challenges, due to the proliferation of diversified terminals and unprecedented services such as internet of things(IoT), high-definition videos, virtual/augmented reality(VR/AR). To accommodate massive connections and astonish mobile traffic, an efficient 5G transport network is required. Optical transport network has been demonstrated to play an important role for carrying 5G radio signals. This paper focuses on the future challenges, recent studies and potential solutions for the 5G flexible optical transport networks with the performances on large-capacity, low-latency and high-efficiency. In addition, we discuss the technology development trends of the 5G transport networks in terms of the optical device, optical transport system, optical switching, and optical networking. Finally, we conclude the paper with the improvement of network intelligence enabled by these technologies to deterministic content delivery over 5G optical transport networks.
文摘Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance for studying the survivability of optical networks. Firstly, a three-channel network model is established and analyzing common alarm data, the fault monitoring points and common fault points are carried out. The artificial neural network is introduced into the fault location field of OTN and it is used to judge whether the possible fault point exists or not. But one of the obvious limitations of general neural networks is that they receive a fixedsize vector as input and produce a fixed-size vector as the output. Not only that, these models is even fixed for mapping operations (for example, the number of layers in the model). The difference between the recurrent neural network and general neural networks is that it can operate on the sequence. In spite of the fact that the gradient disappears and the gradient explodes still exist in the neural network, the method of gradient shearing or weight regularization is adopted to solve this problem, and choose the LSTM (long-short term memory networks) to locate the fault. The output uses the concept of membership degree of fuzzy theory to express the possible fault point with the probability from 0 to 1. Priority is given to the treatment of fault points with high probability. The concept of F-Measure is also introduced, and the positioning effect is measured by using location time, MSE and F-Measure. The experiment shows that both LSTM and BP neural network can locate the fault of optical transport network well, but the overall effect of LSTM is better. The localization time of LSTM is shorter than that of BP neural network, and the F1-score of LSTM can reach 0.961566888396156 after 45 iterations, which meets the accuracy and real-time requirements of fault location. Therefore, it has good application prospect and practical value to introduce neural network into the fault location field of optical transport network.
基金Supported by National Science Foundation of China(No.81800878)Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2017QN24)+1 种基金Key Technological Research Projects of Songjiang District(No.18sjkjgg24)Bethune Langmu Ophthalmological Research Fund for Young and Middle-aged People(No.BJ-LM2018002J)
文摘AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data.
基金This work is supported in part by the US National Science Foundation under Grants CNS-1320664, and by the Wireless Engineering Research and Education Center (WEREC) at Auburn University, Aubur, AL, USA.
文摘Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.
基金Peng Xie acknowledges the support from the China Scholarship Council(Grant no.201804910829).
文摘Parallel multi-thread processing in advanced intelligent processors is the core to realize high-speed and high-capacity signal processing systems.Optical neural network(ONN)has the native advantages of high parallelization,large bandwidth,and low power consumption to meet the demand of big data.Here,we demonstrate the dual-layer ONN with Mach-Zehnder interferometer(MZI)network and nonlinear layer,while the nonlinear activation function is achieved by optical-electronic signal conversion.Two frequency components from the microcomb source carrying digit datasets are simultaneously imposed and intelligently recognized through the ONN.We successfully achieve the digit classification of different frequency components by demultiplexing the output signal and testing power distribution.Efficient parallelization feasibility with wavelength division multiplexing is demonstrated in our high-dimensional ONN.This work provides a high-performance architecture for future parallel high-capacity optical analog computing.
基金supported by National Science Foundation Project of P. R. China (No.61501026,U1603116)the Fundamental Research Funds for the Central Universities (No.FRF-TP-15-032A1)
文摘In this paper, we investigate the link resource management problem for optical networks, to achieve the resource cost during the information transmission. We use the differential game to formulate the cost control problem for the link resource management, to minimize the resource allocation cost functions, which dynamic behaviours are described by differential equations. Each link controls its transmission bandwidth based on the Nash equilibriums of the differential game. The effectiveness of the proposed model is given through numerical simulations.
文摘A behavior model for the receiver of the Ethernet passive optical network(EPON) is presented. The model consists of a fiber, a photodetector, a transimpedance amplifier (TIA) followed by a limiting amplifier and a clock and data recovery' circuit (CDR). Each sub-model is constructed based on the architecture of a circuit. The noise and jitter in each block such as shot noise, thermal noise, deterministic and random jitter are also considered. The performance of the whole receiver can be evaluated by the simulation of the behavior model, which is faster than the ordinary circuit model and more accurate than the analytical model. The whole model is implemented with C ++ and simulated in Microsoft Visual C ++ 6. 0. Using the Monte Carlo method, the EPON receiver is simulated. The simulation results show a good agreement with experimental ones.
基金supported by the NSFC for Distin guished Young Scholars(No.60325104)NSFC (No.90704006)+4 种基金National 973 Program(No.2007CB310705)National 863 Program(No.2006AA01Z238)PCSIRT(No.IRT0609)ISTCP(No.2006DFA11040)111 Project(No.B07005),P.R.China
文摘National R&D activities on optical switching networkare introduced. Optical switching network testbedswere established in China including 3T-net andOBS ring and mesh network test-bed with the supportof national '863' program. As an importantmodule in OPS network, a novel all-optical serialmulticast mode is discussed.
基金Project supported by Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No .04dz12045)
文摘This paper presents the design and implementation of access controller used for Ethernet passive optical network ( EPON). As a first step to develop an ASIC product, the entire system is designed on a field programmable gate array (FPGA) with an embedded CPU. To reduce working frequency of the FPGA, the byte-to-word conversion is proposed. Propagation delays are equalized by ranging procedure so as to avoid data collision. Implementations of synchronization, classification, as well as Linux porting are illustrated in detail. The interface between the FPGA and CPU are also presented. Experimental results show that the proposed system can properly function in a relatively low cost FPGA.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674107,61475049,11775083,61875057,61774062,and 61771205)Special Funds for the Cultivation of Guangdong College Students’ Scientific and Techonlogical Innovation,China(Grant No.pdjhb0139)
文摘By adjusting the waveguide length ratio, we study the extraordinary characteristics of electromagnetic waves propagating in one-dimensional(1D) parity-time-symmetric(PT-symmetric) two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios respectively. It is found that the number and the corresponding frequencies of the extremum spontaneous PT-symmetric breaking points are dependent on the waveguide length ratio. Near the extremum breaking points, ultrastrong extraordinary transmissions are created and the maximal can arrive at, respectively, 2.4079 × 10^14 and 4.3555 × 10^13 in both kinds of networks. However, bidirectional invisibility can only be produced by the networks with broken integer waveguide length ratio, whose mechanism is explained in detail from the perspective of photonic band structure. The findings of this work can be useful optical characteristic control in the fabrication of PT-symmetric optical waveguide networks, which possesses great potential in designing optical amplifiers,optical energy saver devices, and special optical filters.
文摘Optical network is the infrastructure of telecommunicationnetwork. More than 95% of information istransported over optical network in China, wherecore network is the main trunk. How to increase thebit rate of the single wavelength channel, raise thetotal capacity of the DWDM system, extend theoptical transportation distance of electrical repeaterfree of the DWDM system and optical network intelligenceare key problems demanding high attention.The evolution trend of the optical core network isdescribed with some examples in this paper.
基金supported by ZTE Industry-Academia-Research Cooperation Funds under Grant No.Surrey-Ref-9953
文摘Software defined optical networks (SDONs) integrate software defined technology with optical communication networks and represent the promising development trend of future optical networks. The key technologies for SDONs include software-defined optical transmission, switching, and networking. The main features include control and transport separation, hard-ware universalization, protocol standardization, controllable optical network, and flexible optical network applications. This paper introduces software defined optical networks and its innovation environment, in terms of network architecture, protocol extension solution, experiment platform and typical applications. Batch testing has been conducted to evaluate the performance of this SDON testbed. The results show that the SDON testbed has good scalability in different sizes. Meanwhile, we notice that controller output bandwidth has great influence on lightpath setup delay.
文摘Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-malignant and neoplastic polyps.Although technologies for image-enhanced endoscopy are widely available,optical diagnosis has not been incorporated into routine clinical practice,mainly due to significant inter-operator variability.In recent years,there has been a growing number of studies demonstrating the potential of convolutional neural networks(CNN)to enhance optical diagnosis of polyps.Data suggest that the use of CNNs might mitigate the inter-operator variability amongst endoscopists,potentially enabling a“resect and discard”or“leave in”strategy to be adopted in real-time.This would have significant financial benefits for healthcare systems,avoid unnecessary polypectomies of non-neoplastic polyps and improve the efficiency of colonoscopy.Here,we review advances in CNN for the optical diagnosis of colorectal polyps,current limitations and future directions.
文摘New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.