室内定位技术在多领域有着重要的应用,而传统的无线局域网(Wireless Local Area Network,WLAN)指纹定位方法通常很少考虑WLAN接收信号强度(Received Signal Strength,RSS)特征的多样性以及来自不同接入点(Access Point,AP)的RSS特征位...室内定位技术在多领域有着重要的应用,而传统的无线局域网(Wireless Local Area Network,WLAN)指纹定位方法通常很少考虑WLAN接收信号强度(Received Signal Strength,RSS)特征的多样性以及来自不同接入点(Access Point,AP)的RSS特征位置分辨力的差异性问题,从而导致WLAN定位精度不高且定位效率较低.对此,本文提出一种基于多维模糊映射AP优化的WLAN室内定位方法.在离线阶段通过多次采集RSS数据提取多维RSS特征,计算AP信息增益比及相应的离线模糊隶属度,并利用模糊关系方程求解多维RSS特征模糊权重;而在在线阶段,则通过多维模糊映射构造模糊判定矩阵并计算AP在线模糊隶属度,同时结合K近邻(K-Nearest Neighbor,KNN)算法完成对目标的位置坐标计算.实验结果表明,相较于传统的AP优化定位方法,所提方法在线阶段的定位计算开销最高减少了4.12 s,定位误差4 m内的置信概率为91.91%.展开更多
文摘室内定位技术在多领域有着重要的应用,而传统的无线局域网(Wireless Local Area Network,WLAN)指纹定位方法通常很少考虑WLAN接收信号强度(Received Signal Strength,RSS)特征的多样性以及来自不同接入点(Access Point,AP)的RSS特征位置分辨力的差异性问题,从而导致WLAN定位精度不高且定位效率较低.对此,本文提出一种基于多维模糊映射AP优化的WLAN室内定位方法.在离线阶段通过多次采集RSS数据提取多维RSS特征,计算AP信息增益比及相应的离线模糊隶属度,并利用模糊关系方程求解多维RSS特征模糊权重;而在在线阶段,则通过多维模糊映射构造模糊判定矩阵并计算AP在线模糊隶属度,同时结合K近邻(K-Nearest Neighbor,KNN)算法完成对目标的位置坐标计算.实验结果表明,相较于传统的AP优化定位方法,所提方法在线阶段的定位计算开销最高减少了4.12 s,定位误差4 m内的置信概率为91.91%.