By using AP-FIM the varity of the ordered degree of Ni_3Al with L1_2 structure with B content was studied. The possibility of boron improving ductility was also discussed from bonding between Ni and Al atoms, and anti...By using AP-FIM the varity of the ordered degree of Ni_3Al with L1_2 structure with B content was studied. The possibility of boron improving ductility was also discussed from bonding between Ni and Al atoms, and antisite defects in Ni_3Al. The extent of ordering is reduced with an increase in boron content and the autisite defects are most obvious for 0.52at.K B-doped sample that has the best ductility. Some results were verified by X-ray diffraction non. The addition of boron not only influences electron environment at grain boundary but also in the interior of Ni_3Al gm ins, the latter is favorable to improve the ductility of Ni_3Al grains.展开更多
The microstructures of TiAl intermetallic compounds prepared by ingot metallurgy and centrifugal spray deposition (CSD) were compared by field ion microscopy and atom probe (AP-FIM). The samples used have nearly stoi...The microstructures of TiAl intermetallic compounds prepared by ingot metallurgy and centrifugal spray deposition (CSD) were compared by field ion microscopy and atom probe (AP-FIM). The samples used have nearly stoichiometric composition of TiAl but there is Mn addition for ingot metallurgy (IM) samples and Mn and Nb additions for CSD samples. The field ion image of TiAl showed two regions of ordered f.c.t crystal structure (γ-TiAl) and disordered α-Ti3Al, and the distribution of Ti and Al atoms in TiAl alloy showed a lamellar structure which was confirmed by AP profiles. AP profiles showed that the major constituent of IM TiAl alloy is γ-TiAl with some Ti-rich regions. The compositions of these Ti-rich regions are nearly Ti3Al and Ti2Al from the calculation of AP data. The sample of CSD has a similar microstructure as compared with IM sample. The effects of alloying elements (Mn and Nb) on the ordering extent ,their distribution, and their sites occupied in the lattice were explored for both TiAl alloys. But there are no obvious Ti3Al or Ti2Al phases as shown in IM sample. In addition, the distributions of Mn and Nb concentrations in the CSD sample have a characteristic of wave form.展开更多
The purpose of the present work is to study the NiO cluster formation in Ni3Al alloys by field ion microscope and atom probe (AP-FIM). A polycrystal Ni3Al (B-doped) was heat-treated in atmospheres, the surface adsorpt...The purpose of the present work is to study the NiO cluster formation in Ni3Al alloys by field ion microscope and atom probe (AP-FIM). A polycrystal Ni3Al (B-doped) was heat-treated in atmospheres, the surface adsorption of air (hydrogen, oxygen) moisture etc.) occured on the Ni3Al surface and then these absorbents diffused into the interior of alloy through groin boundaries. AP-FIM studies found that the NiO and AlO clusters appeared in the local regions and amount of NiO clusters is much more than that of AlO. Moreover the hydrogen was simultaneously detected in the identical region.These results provided an experimental evidence that the formation of NiO and AlO clusters is the result of reaction of Ni (or Al) with residual moisture in Ni3Al, i.e. Ni+H2 O→NiO+2H. But the samples of B-free Ni3Al and B-doped single crystal Ni3Al have low concentration of NiO and H. This result shows that the diffusion of H2O molecule was promoted by genie boundaries containing boron. In addition, the boron suppresses environmental emvironmental was discussed, which suggested that the formation of Ni-O bonding has influence on bonding character of Ni-Al atoms and benefits the ductility of alloy.展开更多
基金This project was supported by the National Nature Science Foundation of China!(Grant No.59831020 and 59895156)
文摘By using AP-FIM the varity of the ordered degree of Ni_3Al with L1_2 structure with B content was studied. The possibility of boron improving ductility was also discussed from bonding between Ni and Al atoms, and antisite defects in Ni_3Al. The extent of ordering is reduced with an increase in boron content and the autisite defects are most obvious for 0.52at.K B-doped sample that has the best ductility. Some results were verified by X-ray diffraction non. The addition of boron not only influences electron environment at grain boundary but also in the interior of Ni_3Al gm ins, the latter is favorable to improve the ductility of Ni_3Al grains.
基金the National Natural Science Foundation of China(Grant No.59831020)
文摘The microstructures of TiAl intermetallic compounds prepared by ingot metallurgy and centrifugal spray deposition (CSD) were compared by field ion microscopy and atom probe (AP-FIM). The samples used have nearly stoichiometric composition of TiAl but there is Mn addition for ingot metallurgy (IM) samples and Mn and Nb additions for CSD samples. The field ion image of TiAl showed two regions of ordered f.c.t crystal structure (γ-TiAl) and disordered α-Ti3Al, and the distribution of Ti and Al atoms in TiAl alloy showed a lamellar structure which was confirmed by AP profiles. AP profiles showed that the major constituent of IM TiAl alloy is γ-TiAl with some Ti-rich regions. The compositions of these Ti-rich regions are nearly Ti3Al and Ti2Al from the calculation of AP data. The sample of CSD has a similar microstructure as compared with IM sample. The effects of alloying elements (Mn and Nb) on the ordering extent ,their distribution, and their sites occupied in the lattice were explored for both TiAl alloys. But there are no obvious Ti3Al or Ti2Al phases as shown in IM sample. In addition, the distributions of Mn and Nb concentrations in the CSD sample have a characteristic of wave form.
基金The National Natural Science Foundation of China!(Grant No. 59831020)
文摘The purpose of the present work is to study the NiO cluster formation in Ni3Al alloys by field ion microscope and atom probe (AP-FIM). A polycrystal Ni3Al (B-doped) was heat-treated in atmospheres, the surface adsorption of air (hydrogen, oxygen) moisture etc.) occured on the Ni3Al surface and then these absorbents diffused into the interior of alloy through groin boundaries. AP-FIM studies found that the NiO and AlO clusters appeared in the local regions and amount of NiO clusters is much more than that of AlO. Moreover the hydrogen was simultaneously detected in the identical region.These results provided an experimental evidence that the formation of NiO and AlO clusters is the result of reaction of Ni (or Al) with residual moisture in Ni3Al, i.e. Ni+H2 O→NiO+2H. But the samples of B-free Ni3Al and B-doped single crystal Ni3Al have low concentration of NiO and H. This result shows that the diffusion of H2O molecule was promoted by genie boundaries containing boron. In addition, the boron suppresses environmental emvironmental was discussed, which suggested that the formation of Ni-O bonding has influence on bonding character of Ni-Al atoms and benefits the ductility of alloy.