In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measur...In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6'3H20 into the NaaPO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of Kg(FeCN)63H20 increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275℃. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.展开更多
A facile preparation of nitrogen-doped β-TiO2(N-doped β-TiO2) nanobelts and their visible-light photocatalytic activity were reported.The preparation of N-doped β-TiO2 nanobelts consisted of cation-exchange betwe...A facile preparation of nitrogen-doped β-TiO2(N-doped β-TiO2) nanobelts and their visible-light photocatalytic activity were reported.The preparation of N-doped β-TiO2 nanobelts consisted of cation-exchange between layered sodium titanate nanobelts and NH 4 + in aqueous solution at room temperature and subsequent calcination in air.Such a calcination treatment is beneficial to the formation of monoclinic N-doped β-TiO2 nanobelts.Various measurement results indicate that not only were the nitrogen atoms doped into the lattice of β-TiO2 nanobelts resulting in a strong visible-light absorption,but also a large number of defects were caused by them in the lattice,increasing the stability of β-TiO2.The photocatalysis enhancement of N-doped β-TiO2 nanobelts for the photodegradation of Rhodamine B was demonstrated.展开更多
基金supported by the National Basic Research Priorities Program of China (No.2007CB936601)the National Natural Science Foundation of China (Nos.10876017 and 91023037)
文摘In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6'3H20 into the NaaPO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of Kg(FeCN)63H20 increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275℃. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.
基金Supported by the National Basic Research Program of China(No.2006CB932605)the National Natural Science Foundation of China(No.20876002)the Fund of Beijing Technology and Business University for the Talent,China
文摘A facile preparation of nitrogen-doped β-TiO2(N-doped β-TiO2) nanobelts and their visible-light photocatalytic activity were reported.The preparation of N-doped β-TiO2 nanobelts consisted of cation-exchange between layered sodium titanate nanobelts and NH 4 + in aqueous solution at room temperature and subsequent calcination in air.Such a calcination treatment is beneficial to the formation of monoclinic N-doped β-TiO2 nanobelts.Various measurement results indicate that not only were the nitrogen atoms doped into the lattice of β-TiO2 nanobelts resulting in a strong visible-light absorption,but also a large number of defects were caused by them in the lattice,increasing the stability of β-TiO2.The photocatalysis enhancement of N-doped β-TiO2 nanobelts for the photodegradation of Rhodamine B was demonstrated.