期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
On Diagonalization of Idempotent Matrices over APT Rings 被引量:1
1
作者 郭学军 宋光天 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2001年第1期21-26,共6页
Let R be an abelian ring (all idempotents of R lie in the center of R), and A be an idempotent matrix over R. The following statements are proved: (a). A is equivalent to a diagonal matrix if and only if A is similar ... Let R be an abelian ring (all idempotents of R lie in the center of R), and A be an idempotent matrix over R. The following statements are proved: (a). A is equivalent to a diagonal matrix if and only if A is similar to a diagonal matrix. (b). If R is an APT (abelian projectively trivial) ring, then A can be uniquely diagonalized as diag{el, ..., en} and ei divides ei+1. (c). R is an APT ring if and only if R/I is an APT ring, where I is a nilpotent ideal of R. By (a), we prove that a separative abelian regular ring is an APT ring. 展开更多
关键词 Abelian ring APT ring idempotent matrix.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部