Grain size is an important determinant of grain yield in rice.Although dozens of grain size genes have been reported,the molecular mechanisms that control grain size remain to be fully clarified.Here,we report the clo...Grain size is an important determinant of grain yield in rice.Although dozens of grain size genes have been reported,the molecular mechanisms that control grain size remain to be fully clarified.Here,we report the cloning and characterization of GR5(GRAIN ROUND 5),which is allelic to SMOS1/SHB/RLA1/NGR5 and en-codes an AP2 transcription factor.GR5 acts as a transcriptional activator and determines grain size by influencing cell proliferation and expansion.We demonstrated that GR5 physically interacts withfive Gg subunit proteins(RGG1,RGG2,DEP1,GS3,and GGC2)and acts downstream of the G protein complex.Four downstream target genes of GR5 in grain development(DEP2,DEP3,DRW1,and CyCD5;2)were re-vealed and their core T/CGCAC motif identified by yeast one-hybrid,EMSA,and ChIP–PCR experiments.Our results revealed that GR5 interacts with Gg subunits and cooperatively determines grain size by regu-lating the expression of downstream target genes.Thesefindings provide new insight into the genetic reg-ulatory network of the G protein signaling pathway in the control of grain size and provide a potential target for high-yield rice breeding.展开更多
Plants of Artemisia annua produce artemisinin, a sesquiterpene lactone widely used in malaria treatment. Amorpha-4,11-diene synthase (ADS), a sesquiterpene synthase, and CYP71AV1, a P450 monooxygenase, are two key e...Plants of Artemisia annua produce artemisinin, a sesquiterpene lactone widely used in malaria treatment. Amorpha-4,11-diene synthase (ADS), a sesquiterpene synthase, and CYP71AV1, a P450 monooxygenase, are two key enzymes of the artemisinin biosynthesis pathway. Accumulation of artemisinin can be induced by the phytohormone jasmonate (JA). Here, we report the characterization of two JA-responsive AP2 family transcription factors-AaERF1 and AaERF2-from A. annua L. Both genes were highly expressed in inflorescences and strongly induced by JA. Yeast one- hybrid and electrophoretic mobility shift assay (EMSA) showed that they were able to bind to the CRTDREHVCBF2 (CBF2) and RAVlAAT (RAA) motifs present in both ADS and CYP71AV1 promoters. Transient expression of either AaERF1 or AaERF2 in tobacco induced the promoter activities of ADS or CYP71AV1, and the transgenic A. annua plants overexpressing either transcription factor showed elevated transcript levels of both ADS and CYP71AV1, resulting in increased accumulation of artemisinin and artemisinic acid. By contrast, the contents of these two metabolites were reduced in the RNAi transgenic lines in which expression of AaERF1 or AaERF2 was suppressed. These results demonstrate that AaERF1 and AaERF2 are two positive regulators of artemisinin biosynthesis and are of great value in genetic engineering of arte- misinin production.展开更多
Trichome formation has been extensively studied as a mechanistic model for epidermal cell differentiation and cell morphogenesis in plants. However, the genetic and molecular mechanisms underlying trichome formation ...Trichome formation has been extensively studied as a mechanistic model for epidermal cell differentiation and cell morphogenesis in plants. However, the genetic and molecular mechanisms underlying trichome formation (i.e., initiation and elongation) in rice remain largely unclear. Here, we report an AP2/ERF transcription factor, Hairy Leaf 6 (HL6), which controls trichome formation in rice. Functional analyses revealed that HL6 transcriptionally regulates trichome elongation in rice, which is dependent on functional OsWOX3B, a homeodomain-containing protein that acts as a key regulator in trichome initiation. Biochemical and molecular genetic analyses demonstrated that HL6 physically interacts with OsWOX3B, and both of them regulate the expression of some auxin-related genes during trichome formation, in which OsWOX3B likely enhances the binding ability of HL6 with one of its direct target gene, OsYUCCA5. Popu- lation genetic analysis indicated that HL6 was under negative selection during rice domestication. Taken together, our findings provide new insights into the molecular regulatory network of trichome formation in rice.展开更多
Camptotheca acuminata produces camptothecin(CPT),a monoterpene indole alkaloid(MIA)that is widely used in the treatment of lung,colorectal,cervical,and ovarian cancers.Its biosynthesis pathway has attracted significan...Camptotheca acuminata produces camptothecin(CPT),a monoterpene indole alkaloid(MIA)that is widely used in the treatment of lung,colorectal,cervical,and ovarian cancers.Its biosynthesis pathway has attracted significant attention,but the regulation of CPT biosynthesis by the APETALA2/ethylene-responsive factor(AP2/ERF)transcription factors(TFs)remains unclear.In this study,a systematic analysis of the AP2/ERF TFs family in C.acuminata was performed,including phylogeny,gene structure,conserved motifs,and gene expression profiles in different tissues and organs(immature bark,cotyledons,young flower,immature fruit,mature fruit,mature leaf,roots,upper stem,and lower stem)of C.acuminata.A total of 198 AP2/ERF genes were identified and divided into five relatively conserved subfamilies,including AP2(26 genes),DREB(61 genes),ERF(92 genes),RAV(18 genes),and Soloist(one gene).The combination of gene expression patterns in different C.acuminata tissues and organs,the phylogenetic tree,the co-expression analysis with biosynthetic genes,and the analysis of promoter sequences of key enzymes genes involved in CPT biosynthesis pathways revealed that eight AP2/ERF TFs in C.acuminata might be involved in CPT synthesis regulation,which exhibit relatively high expression levels in the upper stem or immature bark.Among these,four genes(Cac AP2/ERF123,Cac AP2/ERF125,Cac AP2/ERF126,and Cac AP2/ERF127)belong to the ERF–B2 subgroup;two genes(Cac AP2/ERF149 and Cac AP2/ERF152)belong to the ERF–B3 subgroup;and two more genes(Cac AP2/ERF095 and Cac AP2/ERF096)belong to the DREB–A6 subgroup.These results provide a foundation for future functional characterization of the AP2/ERF genes to enhance the biosynthesis of CPT compounds of C.acuminata.展开更多
Amylose content(AC) is the main factor determining the palatability, viscosity, transparency, and digestibility of rice(Oryza sativa)grains. AC in rice grains is mainly controlled by different alleles of the Waxy(Wx) ...Amylose content(AC) is the main factor determining the palatability, viscosity, transparency, and digestibility of rice(Oryza sativa)grains. AC in rice grains is mainly controlled by different alleles of the Waxy(Wx) gene. The AP2/EREBP transcription factor OsEBP89 interacts with the MYC-like protein OsBP5 to synergistically regulate the expression of Wx.Here, we determined that the GLYCOGEN SYNTHASE KINASE 5(OsGSK5, also named SHAGGY-like kinase 41 [OsSK41]) inhibits the transcriptional activation activity of OsEBP89 in rice grains during amylose biosynthesis. The loss of OsSK41 function enhanced Wx expression and increased AC in rice grains. By contrast, the loss of function of OsEBP89 reduced Wx expression and decreased AC in rice grains. OsSK41 interacts with OsEBP89 and phosphorylates four of its sites(Thr-28,Thr-30, Ser-238, and Thr-257), which makes OsEBP89 unstable and attenuates its interaction with OsBP5. Wx promoter activity was relatively weak when regulated by the phosphomimicvariantOsEBP89E–OsBP5but relatively strong when regulated by the nonphosphorylatable variant OsEBP89A–OsBP5.Therefore, OsSK41-mediated phosphorylation of OsEBP89 represents an additional layer of complexity in the regulation of amylose biosynthesis during rice grain development. In addition, our findings provide four possible sites for regulating rice grain AC via precise gene editing.展开更多
Trichomes, small protrusions on the surface of many plant species, can produce and store various secondary metabolic products. Artemisinin, the most famous and potent medicine for malaria, is synthesized, stored, and ...Trichomes, small protrusions on the surface of many plant species, can produce and store various secondary metabolic products. Artemisinin, the most famous and potent medicine for malaria, is synthesized, stored, and secreted by Artemisia annua trichomes. However, the molecular basis regulating the biosynthesis of artemisinin and the development of trichomes in A. annua remains poorly understood. Here, we report that an AP2 transcription factor, TRICHOME AND ARTEMISININ REGULATOR 1 (TAR1), plays crucial roles in regulating the development of trichomes and the biosynthesis of artemisinin in A. annua. TAR1, which encodes a protein specially located in the nucleus, is mainly expressed in young leaves, flower buds, and some trichomes. In TAR1-RNAi lines, the morphology of trichomes and the composition of cuticular wax were altered, and the artemisinin content was dramatically reduced, which could be significantly increased by TAR1 oeverexpression. Expression levels of several key genes that are involved in artemisinin biosynthesis were altered when TAR1 was silenced or overexpressed. By the electrophoretic mobility shift, yeast one-hybrid and transient transformation β-glucuronidase assays, we showed that ADS and CYP71AV1, two key genes in the biosynthesis pathway of artemisinin, are likely the direct targets of TAR1. Taken together, our results indicate that TAR1 is a key component of the molecular network regulating trichome development and artemisinin biosynthesis in A. annua.展开更多
基金supported by the National Key Research and Development Program of China (2022YFF1002901)the Hainan Yazhou Bay Seed Laboratory (B21HJ0215)+4 种基金the Natural Science Foundation of China (32272109)the Nanfan special project (ZDXM2315)of CAASthe Natural Science Foundation of China (32072048,U2004204)the Qian Qian Academician Workstation,the specific research fund of the Innovation Platform for Academicians of Hainan Province (YSPTZX202303)the Key Research and Development Program of Zhejiang Province (2021C02056).
文摘Grain size is an important determinant of grain yield in rice.Although dozens of grain size genes have been reported,the molecular mechanisms that control grain size remain to be fully clarified.Here,we report the cloning and characterization of GR5(GRAIN ROUND 5),which is allelic to SMOS1/SHB/RLA1/NGR5 and en-codes an AP2 transcription factor.GR5 acts as a transcriptional activator and determines grain size by influencing cell proliferation and expansion.We demonstrated that GR5 physically interacts withfive Gg subunit proteins(RGG1,RGG2,DEP1,GS3,and GGC2)and acts downstream of the G protein complex.Four downstream target genes of GR5 in grain development(DEP2,DEP3,DRW1,and CyCD5;2)were re-vealed and their core T/CGCAC motif identified by yeast one-hybrid,EMSA,and ChIP–PCR experiments.Our results revealed that GR5 interacts with Gg subunits and cooperatively determines grain size by regu-lating the expression of downstream target genes.Thesefindings provide new insight into the genetic reg-ulatory network of the G protein signaling pathway in the control of grain size and provide a potential target for high-yield rice breeding.
基金This research was supported by State Key Basic Research Program of China (2007CB108800), the National Natural Science Foundation of China (30630008), and the National HighTech Program of China (2007AA021501 ).ACKNO WLEDGMENTS We thank CYP71AV1. discussions Ke-Xuan Tang for supplying the promoter sequence of We thank Ji-Rong Huang and Gao-Jie Hong for he pfu No conflict of interest declared
文摘Plants of Artemisia annua produce artemisinin, a sesquiterpene lactone widely used in malaria treatment. Amorpha-4,11-diene synthase (ADS), a sesquiterpene synthase, and CYP71AV1, a P450 monooxygenase, are two key enzymes of the artemisinin biosynthesis pathway. Accumulation of artemisinin can be induced by the phytohormone jasmonate (JA). Here, we report the characterization of two JA-responsive AP2 family transcription factors-AaERF1 and AaERF2-from A. annua L. Both genes were highly expressed in inflorescences and strongly induced by JA. Yeast one- hybrid and electrophoretic mobility shift assay (EMSA) showed that they were able to bind to the CRTDREHVCBF2 (CBF2) and RAVlAAT (RAA) motifs present in both ADS and CYP71AV1 promoters. Transient expression of either AaERF1 or AaERF2 in tobacco induced the promoter activities of ADS or CYP71AV1, and the transgenic A. annua plants overexpressing either transcription factor showed elevated transcript levels of both ADS and CYP71AV1, resulting in increased accumulation of artemisinin and artemisinic acid. By contrast, the contents of these two metabolites were reduced in the RNAi transgenic lines in which expression of AaERF1 or AaERF2 was suppressed. These results demonstrate that AaERF1 and AaERF2 are two positive regulators of artemisinin biosynthesis and are of great value in genetic engineering of arte- misinin production.
文摘Trichome formation has been extensively studied as a mechanistic model for epidermal cell differentiation and cell morphogenesis in plants. However, the genetic and molecular mechanisms underlying trichome formation (i.e., initiation and elongation) in rice remain largely unclear. Here, we report an AP2/ERF transcription factor, Hairy Leaf 6 (HL6), which controls trichome formation in rice. Functional analyses revealed that HL6 transcriptionally regulates trichome elongation in rice, which is dependent on functional OsWOX3B, a homeodomain-containing protein that acts as a key regulator in trichome initiation. Biochemical and molecular genetic analyses demonstrated that HL6 physically interacts with OsWOX3B, and both of them regulate the expression of some auxin-related genes during trichome formation, in which OsWOX3B likely enhances the binding ability of HL6 with one of its direct target gene, OsYUCCA5. Popu- lation genetic analysis indicated that HL6 was under negative selection during rice domestication. Taken together, our findings provide new insights into the molecular regulatory network of trichome formation in rice.
基金supported by the National Key R&D Program of China(No.2019YFC1711100)the CAMS Innovation Fund for Medical Sciences(CIFMS,No.2016-I2M-3-016)。
文摘Camptotheca acuminata produces camptothecin(CPT),a monoterpene indole alkaloid(MIA)that is widely used in the treatment of lung,colorectal,cervical,and ovarian cancers.Its biosynthesis pathway has attracted significant attention,but the regulation of CPT biosynthesis by the APETALA2/ethylene-responsive factor(AP2/ERF)transcription factors(TFs)remains unclear.In this study,a systematic analysis of the AP2/ERF TFs family in C.acuminata was performed,including phylogeny,gene structure,conserved motifs,and gene expression profiles in different tissues and organs(immature bark,cotyledons,young flower,immature fruit,mature fruit,mature leaf,roots,upper stem,and lower stem)of C.acuminata.A total of 198 AP2/ERF genes were identified and divided into five relatively conserved subfamilies,including AP2(26 genes),DREB(61 genes),ERF(92 genes),RAV(18 genes),and Soloist(one gene).The combination of gene expression patterns in different C.acuminata tissues and organs,the phylogenetic tree,the co-expression analysis with biosynthetic genes,and the analysis of promoter sequences of key enzymes genes involved in CPT biosynthesis pathways revealed that eight AP2/ERF TFs in C.acuminata might be involved in CPT synthesis regulation,which exhibit relatively high expression levels in the upper stem or immature bark.Among these,four genes(Cac AP2/ERF123,Cac AP2/ERF125,Cac AP2/ERF126,and Cac AP2/ERF127)belong to the ERF–B2 subgroup;two genes(Cac AP2/ERF149 and Cac AP2/ERF152)belong to the ERF–B3 subgroup;and two more genes(Cac AP2/ERF095 and Cac AP2/ERF096)belong to the DREB–A6 subgroup.These results provide a foundation for future functional characterization of the AP2/ERF genes to enhance the biosynthesis of CPT compounds of C.acuminata.
基金financially supported by the Innovation Program of Shanghai Municipal Education Commission (2023ZKZD05)the National Natural Science Foundation of China (31971918, 32172043)+1 种基金the Agriculture Research System of Shanghai, China (Grant No. 202203)the Shanghai Science and Technology Innovation Action Plan Project (22N11900200)。
文摘Amylose content(AC) is the main factor determining the palatability, viscosity, transparency, and digestibility of rice(Oryza sativa)grains. AC in rice grains is mainly controlled by different alleles of the Waxy(Wx) gene. The AP2/EREBP transcription factor OsEBP89 interacts with the MYC-like protein OsBP5 to synergistically regulate the expression of Wx.Here, we determined that the GLYCOGEN SYNTHASE KINASE 5(OsGSK5, also named SHAGGY-like kinase 41 [OsSK41]) inhibits the transcriptional activation activity of OsEBP89 in rice grains during amylose biosynthesis. The loss of OsSK41 function enhanced Wx expression and increased AC in rice grains. By contrast, the loss of function of OsEBP89 reduced Wx expression and decreased AC in rice grains. OsSK41 interacts with OsEBP89 and phosphorylates four of its sites(Thr-28,Thr-30, Ser-238, and Thr-257), which makes OsEBP89 unstable and attenuates its interaction with OsBP5. Wx promoter activity was relatively weak when regulated by the phosphomimicvariantOsEBP89E–OsBP5but relatively strong when regulated by the nonphosphorylatable variant OsEBP89A–OsBP5.Therefore, OsSK41-mediated phosphorylation of OsEBP89 represents an additional layer of complexity in the regulation of amylose biosynthesis during rice grain development. In addition, our findings provide four possible sites for regulating rice grain AC via precise gene editing.
文摘Trichomes, small protrusions on the surface of many plant species, can produce and store various secondary metabolic products. Artemisinin, the most famous and potent medicine for malaria, is synthesized, stored, and secreted by Artemisia annua trichomes. However, the molecular basis regulating the biosynthesis of artemisinin and the development of trichomes in A. annua remains poorly understood. Here, we report that an AP2 transcription factor, TRICHOME AND ARTEMISININ REGULATOR 1 (TAR1), plays crucial roles in regulating the development of trichomes and the biosynthesis of artemisinin in A. annua. TAR1, which encodes a protein specially located in the nucleus, is mainly expressed in young leaves, flower buds, and some trichomes. In TAR1-RNAi lines, the morphology of trichomes and the composition of cuticular wax were altered, and the artemisinin content was dramatically reduced, which could be significantly increased by TAR1 oeverexpression. Expression levels of several key genes that are involved in artemisinin biosynthesis were altered when TAR1 was silenced or overexpressed. By the electrophoretic mobility shift, yeast one-hybrid and transient transformation β-glucuronidase assays, we showed that ADS and CYP71AV1, two key genes in the biosynthesis pathway of artemisinin, are likely the direct targets of TAR1. Taken together, our results indicate that TAR1 is a key component of the molecular network regulating trichome development and artemisinin biosynthesis in A. annua.