Fixture design and planning is one of the most important manufacturing activities, playing a pivotal role in deciding the lead time for product development. Fixture design, which affects the part-quality in terms of g...Fixture design and planning is one of the most important manufacturing activities, playing a pivotal role in deciding the lead time for product development. Fixture design, which affects the part-quality in terms of geometric accuracy and surface finish, can be enhanced by using the product manufacturing information(PMI) stored in the neutral standard for the exchange of product model data(STEP) file, thereby integrating design and manufacturing. The present paper proposes a unique fixture design approach, to extract the geometry information from STEP application protocol(AP) 242 files of computer aided design(CAD) models, for providing automatic suggestions of locator positions and clamping surfaces. Automatic feature extraction software "FiXplan", developed using the programming language C#, is used to extract the part feature, dimension and geometry information. The information from the STEP AP 242 file is deduced using geometric reasoning techniques, which in turn is utilized for fixture planning. The developed software is observed to be adept in identifying the primary, secondary, and tertiary locating faces and locator position configurations of prismatic components. Structural analysis of the prismatic part under different locator positions was performed using commercial finite element method software, ABAQUS, and the optimized locator position was identified on the basis of minimum deformation of the workpiece.The area-ratio(base locator enclosed area(%)/work piece base area(%)) for the ideal locator configuration was observed as 33%. Experiments were conducted on a prismatic workpiece using a specially designed fixture, for different locator configurations. The surface roughness and waviness of the machined surfaces were analysed using an Alicona non-contact optical profilometer. The best surface characteristics were obtained for the surface machined under the ideal locator positions having an area-ratio of 33%, thus validating the predicted numerical results. The efficiency, capability and applicability of the developed software is demonstrated for the finishing operation of a sensor cover – a typical prismatic component having applications in the naval industry, under different locator configurations.The best results were obtained under the proposed ideal locator configuration of area-ratio 33%.展开更多
The geometrical and topological information of 3D computer aided design (CAD) models should be represented as a neut- ral format file to exchange the data between different CAD systems. Exchange of 3D CAD model data...The geometrical and topological information of 3D computer aided design (CAD) models should be represented as a neut- ral format file to exchange the data between different CAD systems. Exchange of 3D CAD model data implies that the companies must exchange complete information about their products, all the way from design, manufacturing to inspection and shipping. This informa- tion should be available to each relevant partner over the entire life cycle of the product. This led to the development of an international standard organization (ISO) neutral format file named as standard for the exchange of product model data (STEP). It has been ob- served from the literature, the feature recognition systems developed were identified as planar, cylindrical, conical and to some extent spherical and toroidal surfaces. The advanced surface features such as B-spline and its subtypes are not identified. Therefore, in this work, a STEP-based feature recognition system is developed to recognize t--spline surface features and its sub-types from the 3D CAD model represented in AP203 neutral file format. The developed feature recognition system is implemented in Java programming language and the product model data represented in STEP AP203 format is interpreted through Java standard data access interface (JSDAI). The developed system could recognize B-spline surface features such as B-Spline surface with knots, quasi uniform surface, uniform surface, rational surface and Bezier surface. The application of extracted B-spline surface features information is discussed with reference to the toolpath generation for STEP-NC (STEP AP238).展开更多
基金Department of Science and Technology,Government of India for providing financial support under the scheme FIST(No.SR/FST/ETI-388/2015)。
文摘Fixture design and planning is one of the most important manufacturing activities, playing a pivotal role in deciding the lead time for product development. Fixture design, which affects the part-quality in terms of geometric accuracy and surface finish, can be enhanced by using the product manufacturing information(PMI) stored in the neutral standard for the exchange of product model data(STEP) file, thereby integrating design and manufacturing. The present paper proposes a unique fixture design approach, to extract the geometry information from STEP application protocol(AP) 242 files of computer aided design(CAD) models, for providing automatic suggestions of locator positions and clamping surfaces. Automatic feature extraction software "FiXplan", developed using the programming language C#, is used to extract the part feature, dimension and geometry information. The information from the STEP AP 242 file is deduced using geometric reasoning techniques, which in turn is utilized for fixture planning. The developed software is observed to be adept in identifying the primary, secondary, and tertiary locating faces and locator position configurations of prismatic components. Structural analysis of the prismatic part under different locator positions was performed using commercial finite element method software, ABAQUS, and the optimized locator position was identified on the basis of minimum deformation of the workpiece.The area-ratio(base locator enclosed area(%)/work piece base area(%)) for the ideal locator configuration was observed as 33%. Experiments were conducted on a prismatic workpiece using a specially designed fixture, for different locator configurations. The surface roughness and waviness of the machined surfaces were analysed using an Alicona non-contact optical profilometer. The best surface characteristics were obtained for the surface machined under the ideal locator positions having an area-ratio of 33%, thus validating the predicted numerical results. The efficiency, capability and applicability of the developed software is demonstrated for the finishing operation of a sensor cover – a typical prismatic component having applications in the naval industry, under different locator configurations.The best results were obtained under the proposed ideal locator configuration of area-ratio 33%.
文摘The geometrical and topological information of 3D computer aided design (CAD) models should be represented as a neut- ral format file to exchange the data between different CAD systems. Exchange of 3D CAD model data implies that the companies must exchange complete information about their products, all the way from design, manufacturing to inspection and shipping. This informa- tion should be available to each relevant partner over the entire life cycle of the product. This led to the development of an international standard organization (ISO) neutral format file named as standard for the exchange of product model data (STEP). It has been ob- served from the literature, the feature recognition systems developed were identified as planar, cylindrical, conical and to some extent spherical and toroidal surfaces. The advanced surface features such as B-spline and its subtypes are not identified. Therefore, in this work, a STEP-based feature recognition system is developed to recognize t--spline surface features and its sub-types from the 3D CAD model represented in AP203 neutral file format. The developed feature recognition system is implemented in Java programming language and the product model data represented in STEP AP203 format is interpreted through Java standard data access interface (JSDAI). The developed system could recognize B-spline surface features such as B-Spline surface with knots, quasi uniform surface, uniform surface, rational surface and Bezier surface. The application of extracted B-spline surface features information is discussed with reference to the toolpath generation for STEP-NC (STEP AP238).