期刊文献+
共找到3,862篇文章
< 1 2 194 >
每页显示 20 50 100
Asymptotic normality of error density estimator in stationary and explosive autoregressive models
1
作者 WU Shi-peng YANG Wen-zhi +1 位作者 GAO Min HU Shu-he 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期140-158,共19页
In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity... In this paper,we consider the limit distribution of the error density function estima-tor in the rst-order autoregressive models with negatively associated and positively associated random errors.Under mild regularity assumptions,some asymptotic normality results of the residual density estimator are obtained when the autoregressive models are stationary process and explosive process.In order to illustrate these results,some simulations such as con dence intervals and mean integrated square errors are provided in this paper.It shows that the residual density estimator can replace the density\estimator"which contains errors. 展开更多
关键词 explosive autoregressive models residual density estimator asymptotic distribution association sequence
下载PDF
基于AR-ECM平均差异模型的串联电池组SOC、容量多尺度联合估计方法
2
作者 刘芳 余丹 +1 位作者 苏卫星 卜凡涛 《中国电机工程学报》 EI CSCD 北大核心 2024年第10期3937-3948,I0016,共13页
考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM... 考虑电池单体老化差异所致的电池组不一致性,针对串联电池组荷电状态(state of charge,SOC)、容量估计问题,提出一种基于自回归等效电路模型(autoregression equivalent circuit model,AR-ECM)的平均差异模型(mean-difference model,MDM)。基于此模型,提出串联电池组SOC、容量多尺度联合估计算法。该算法由2个部分组成,一是基于AR-ECM的MDM及差异化模型参数辨识策略:条件辨识策略和定频分组辨识策略;二是基于多时间尺度H无穷滤波(multi-timescale H infinity filter,Mts-HIF)的电池组SOC、容量联合估计算法。通过将所提出MDM中的自回归平均模型(autoregression mean model,AR-MM)与传统MDM中的n阶RC平均模型(nRC mean model,nRC-MM)比较,结果表明所提出的AR-MM在复杂运行工况下具有更优的动态跟随性能。依据最小化信息量准则(akaike information criterion,AIC),AR-MM具有更优的复杂度与精度的权衡。通过与基于多时间尺度扩展卡尔曼滤波(multi-timescale extended Kalman filter,Mts-EKF)联合状态估计算法比较,结果表明所提出的Mts-HIF状态估计算法具有更优的鲁棒性、精度和收敛速度。 展开更多
关键词 串联电池组 自回归等效电路模型 平均差异模型 容量 荷电状态 H无穷滤波
下载PDF
相干累加与AR滤波相结合的舰船轴频电场信号处理方法
3
作者 程锦房 谢昌奇 +1 位作者 张伽伟 喻鹏 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第3期229-236,共8页
针对采用电场传感器阵列测量舰船电场的应用场景,为提升目标轴频电场的信噪比,提出一种相干累加结合自回归(autoregressive,AR)模型滤波的方法对阵列电场信号进行处理。对测量得到的阵列电场信号进行时延补偿后累加,同时对环境电场信号... 针对采用电场传感器阵列测量舰船电场的应用场景,为提升目标轴频电场的信噪比,提出一种相干累加结合自回归(autoregressive,AR)模型滤波的方法对阵列电场信号进行处理。对测量得到的阵列电场信号进行时延补偿后累加,同时对环境电场信号进行AR建模,并利用AR模型参数构造滤波器,以对累加后的信号实施滤波处理。为验证所提方法在低信噪比条件下的有效性,对实测阵列式电场信号进行处理,结果表明,所提方法能够在信噪比为-25.39 dB的条件下有效压制噪声频谱,保留轴频线谱,处理后信噪比提高约21.92 dB。 展开更多
关键词 轴频电场 阵列信号处理 相干累加 ar模型滤波
下载PDF
基于ARIMA-TCN混合模型的高速铁路时间同步方法
4
作者 陈永 詹芝贤 张薇 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期90-100,共11页
列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(... 列控系统作为高速铁路的核心系统,保持其系统的时间同步对于行车安全至关重要。针对现有时间同步方法易受时变上下行传输时延、随机时钟跳变等影响,导致主从时钟偏移估计不准确的问题,提出一种基于差分自回归移动平均-时域卷积神经网络(ARIMA-TCN)混合模型的高速铁路时间同步方法。首先,根据上下行链路传输速率的不对称比,建立高速铁路时钟的数学理论和实际观测模型。然后,使用拉依达准则识别处理跳变异常值,完成实际时间序列的预处理。再次,使用ARIMA模型平滑时间序列中不确定时延带来的噪声抖动,获得平稳的时间序列。最后,通过提出的注意力增强TCN模型进行预测补偿,完成时钟偏移的补偿校正。通过实验仿真,得到基站区间内位置、基站间距以及车速对高速铁路时间同步的影响性分析。实验结果表明:与对比方法相比,所提方法补偿后的均方根误差较最小二乘法减少了75%、较最大似然估计方法误差减少了44.4%,较BP神经网络方法误差减少了16.7%,验证所提方法具有更低的同步误差和更高的同步精度。 展开更多
关键词 时间同步 精确时钟协议 差分自回归移动平均模型 注意力增强时域卷积网络 时间补偿
下载PDF
基于小波分解和ARIMA-GARCH-GRU组合模型的制造业PMI预测
5
作者 陆文星 任环宇 +1 位作者 梁昌勇 李克卿 《工业工程》 2024年第1期86-95,127,共11页
制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过... 制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过小波变换,由整合移动平均自回归–广义自回归条件异方差模型(ARIMA-GARCH)处理稳态低频数据,门控循环单元(GRU)处理波动性强的高频数据,将各频段预测结果进行融合得到最终预测结果。为验证模型有效性,选取一定数据量的PMI指数进行实验。结果表明,与其他常见模型对比,本文构建的组合模型具有较好的预测精度与性能,平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别达到0.00329、0.004162、0.65%。 展开更多
关键词 采购经理人指数(PMI) 小波分解 整合移动平均自回归模型(arIMA) 广义的自回归条件异方差模型(GarCH) 门控循环单元(GRU)
下载PDF
基于季节ARIMA模型对某三级综合性医院门诊量的预测研究
6
作者 陈文娟 林建潮 《中国医院统计》 2024年第3期185-188,共4页
目的 通过建立季节ARIMA模型,对浙江省某三级综合性医院门诊量进行预测,为医院合理配备门诊人力资源提供依据。方法 以2013年1—6月浙江省某医院门诊量数据为基线,利用SPSS软件构建季节ARIMA模型,对2023年7—12月的门诊量进行预测,通过... 目的 通过建立季节ARIMA模型,对浙江省某三级综合性医院门诊量进行预测,为医院合理配备门诊人力资源提供依据。方法 以2013年1—6月浙江省某医院门诊量数据为基线,利用SPSS软件构建季节ARIMA模型,对2023年7—12月的门诊量进行预测,通过对比门诊量实测值,评价季节ARIMA模型预测门诊人次的精度。结果 该综合性医院门诊量呈现逐年上升趋势,并呈现周期性波动的特征。拟合的最优季节ARIMA模型为ARIMA(0,1,1)(1,0,1)12,BIC(贝叶斯信息准则)为5.273,MAPE(平均绝对百分误差)为14.265,R2(模块决定系数)为0.408,总体相对误差为1.83%,预测结果良好。结论 季节ARIMA模型较好地模拟了该三级综合性医院门诊量在时间序列上的变化趋势,为该院门诊量的短期预测提供理论依据。 展开更多
关键词 季节arIMA 门诊人次 时间序列分析 预测模型
下载PDF
基于自适应AR模型巡航飞行参数预测研究
7
作者 钱宇 王立新 +1 位作者 张恒 刘瑜 《计算机应用与软件》 北大核心 2024年第4期73-79,共7页
为更准确实现飞行参数趋势预测,提出一种基于自适应自回归(AR)模型的稳定巡航飞行参数预测方法。根据稳定巡航参数筛选条件,获取建模所需飞行参数。利用卡尔曼滤波原理估计AR模型参数,并与飞行参数构建系统方程,利用无迹卡尔曼滤波实时... 为更准确实现飞行参数趋势预测,提出一种基于自适应自回归(AR)模型的稳定巡航飞行参数预测方法。根据稳定巡航参数筛选条件,获取建模所需飞行参数。利用卡尔曼滤波原理估计AR模型参数,并与飞行参数构建系统方程,利用无迹卡尔曼滤波实时更新、修正AR模型参数估计值,将自适应AR模型的预测值与曲线拟合模型和灰色模型的预测值进行对比。以波音B777-300ER飞机的快速存取记录器数据样本进行仿真验证,结果表明:自适应AR模型在数据预测和收敛速率方面均更优,可有效降低预报模型随步数增加导致的精度误差,提高参数预测准确性。研究在飞机维修保障、状态监控与预测等方面具有重要作用。 展开更多
关键词 无迹卡尔曼滤波 自适应ar模型 飞行参数预测 曲线拟合模型 灰色模型
下载PDF
基于D3AR的半球共形阵低空风切变风速估计方法
8
作者 李海 唐芳 李双双 《雷达科学与技术》 北大核心 2024年第1期21-28,共8页
针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方... 针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方法首先将待检测距离单元的数据从空域、时域以及空时域进行信号对消处理;然后将处理后的数据矩阵描述为空时自回归(Autoregression,AR)模型并估计模型参数;再通过构造与杂波子空间正交的空间来实现对杂波的抑制,最后通过提取待检测单元的最大多普勒频率来估计风场速度。根据仿真结果显示,该方法有效地实现了地杂波抑制,并且能够精确估计风速。 展开更多
关键词 半球共形阵 低空风切变 ar模型 风速估计
下载PDF
基于MS(2)-AR-TVTP模型的I_(BD)波动周期非对称性和持续性分析
9
作者 陈丽芬 谢新连 林嘉俊 《中国航海》 CSCD 北大核心 2024年第2期65-71,共7页
国际干散货运输市场源于国际贸易的衍生需求,受世界经济的影响,是一个典型的周期性市场。选取1999年11月~2021年12月的波罗的海干散货运价指数(I_(BD))月度数据,在检验序列平稳性的基础上,确定最优滞后长度,构建两区制的时变转换概率马... 国际干散货运输市场源于国际贸易的衍生需求,受世界经济的影响,是一个典型的周期性市场。选取1999年11月~2021年12月的波罗的海干散货运价指数(I_(BD))月度数据,在检验序列平稳性的基础上,确定最优滞后长度,构建两区制的时变转换概率马尔科夫转换自回归模型,分析I_(BD)波动周期的持续时间、转换拐点和非对称性等主要特征。研究结果表明:模型能有效拟合I_(BD)波动周期的主要特征,周期平均持续时间为33.7个月,自2008年9月之后呈缩短态势,上升期和下降期交互更频繁;I_(BD)波动周期具有非对称性,周期内上升期持续时间比下降期长,I_(BD)维持上升期更具有稳定性。周期性特征结果可为干散货航运业造船投资和市场经营提供决策依据。 展开更多
关键词 MS(2)-ar-TVTP模型 I_(BD)波动周期 转换拐点 持续时间
下载PDF
基于R语言时间序列的ARIMA模型预测某三甲综合医院人均月住院费用和住院日的研究
10
作者 李君 曹良海 《中国卫生产业》 2024年第11期220-224,共5页
目的运用自回归积分滑动平均模型(Autoregressive Intergrated Moving Average,ARIMA)建立月平均住院费用和住院日的医学经济学模型,为医院精细化管理提供依据。方法利用R4.0.2软件对2017年1月—2021年12月四川大学华西医院宜宾医院(宜... 目的运用自回归积分滑动平均模型(Autoregressive Intergrated Moving Average,ARIMA)建立月平均住院费用和住院日的医学经济学模型,为医院精细化管理提供依据。方法利用R4.0.2软件对2017年1月—2021年12月四川大学华西医院宜宾医院(宜宾市第二人民医院)的平均住院费用和住院日数据建立时间序列ARIMA预测模型。结果住院费用最优模型为ARIMA(0,1,1),赤池信息准则(Akaike information criterion,AIC)=924.35,贝叶斯信息准则(Bayesian Information Criterion,BIC)=928.51,残差Ljung-Box Q=12.51(P=0.768),可认为残差序列为白噪声。平均住院日的最优模型为ARIMA(5,1,1),AIC=87.49,BIC=104.11,残差Ljung-Box Q=10.05(P=0.612),可认为残差序列为白噪声。2022年1—12月实际值与预测值基本吻合,月人均住院费用和人均住院日的平均相对误差为0.55%、0.29%。结论建立基于时间序列ARIMA模型能够为合理配置卫生资源提供强有力的数据支撑。 展开更多
关键词 自回归积分滑动平均模型 平均住院费用 平均住院日 预测
下载PDF
基于WPD-ARIMA-GARCH组合模型的酱卤肉制品安全风险区间预测 被引量:1
11
作者 尹佳 黄茜 +7 位作者 陈翔 陈晨 陈锂 张涛 徐成 黄亚平 郭鹏程 文红 《食品科学》 EI CAS CSCD 北大核心 2024年第3期176-184,共9页
针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,... 针对传统确定性预测不能提供不确定性信息的难题,本研究提出了一种点估计和区间估计组合预测模型,并将其创新性地应用在食品安全风险预警领域。在点估计部分,使用小波包分解(wavelet packet decomposition,WPD)对周风险等级序列分解后,应用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型进行预测;在区间估计部分,使用广义自回归条件异方差(generalized autoregressive conditional heteroskedast,GARCH)模型对残差进行预测。本实验将建立的WPD-ARIMA-GARCH组合模型运用于某地区酱卤肉制品的风险预测,结果表明2019年的3月底和7月底该地区的酱卤肉制品安全风险较高,与实际情况相符;同时,该模型在10个不同地区的酱卤肉制品风险预测中,均方误差、平均绝对误差和平均绝对百分比误差分别为1.626、0.806和20.824;其90%置信区间的预测区间平均宽度和覆盖宽度标准值均为0.024,可以覆盖所有真实值。该模型具有较高的预测精度和较低的误差,能对酱卤肉制品质量安全起到风险防控作用,可为日常食品安全监管提供相应的技术支持。 展开更多
关键词 酱卤肉制品 小波包分解 差分自回归移动平均模型 广义自回归条件异方差模型 区间估计
下载PDF
JUMP DETECTION BY WAVELET IN NONLINEAR AUTOREGRESSIVE MODELS 被引量:2
12
作者 李元 谢衷洁 《Acta Mathematica Scientia》 SCIE CSCD 1999年第3期261-271,共11页
Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have signi... Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have significantly large absolute values across fine scale levels, the number of the jump points and locations where the jumps occur are estimated. The jump heights are also estimated. All estimators are shown to be consistent. Wavelet method ia also applied to the threshold AR(1) model(TAR(1)). The simple estimators of the thresholds are given,which are shown to be consistent. 展开更多
关键词 jump points nonlinear autoregressive models WAVELETS
下载PDF
基于ARIMA模型预测镇江市肺结核流行趋势及分析 被引量:2
13
作者 伍鸿远 夏媛媛 《现代医药卫生》 2024年第1期20-25,30,共7页
目的通过构建季节性差分整合移动平均自回归模型(ARIMA模型)预测江苏省镇江市肺结核流行趋势并验证模型的有效性,探讨新型冠状病毒感染疫情对肺结核流行情况的影响。方法收集江苏省镇江市2014-2022年肺结核月发病数资料,构建季节性ARIM... 目的通过构建季节性差分整合移动平均自回归模型(ARIMA模型)预测江苏省镇江市肺结核流行趋势并验证模型的有效性,探讨新型冠状病毒感染疫情对肺结核流行情况的影响。方法收集江苏省镇江市2014-2022年肺结核月发病数资料,构建季节性ARIMA模型,以2022年1-12月肺结核发病数验证预测模型效果,并分析预测误差产生的原因。结果2014-2022年镇江市共报告肺结核病例11316例,除2017、2019年发病率有所回升外,总体发病率呈下降趋势,发病主要集中在3-8月。ARIMA(1,1,1)(1,1,0)_(12)的BIC值(5.913)最小,残差白噪声也通过检验。但短期自相关部分的AR系数不显著,因此建立ARIMA(0,1,1)(1,1,0)_(12)。2022年镇江市肺结核月发病数实际值与预测值存在一定的偏差(平均相对预测误差为19.20%),但均在拟合值的95%可信区间内,实际月发病数(平均78例/月)与预测值(平均78例/月)变化趋势基本一致,模型拟合度较好,可用于预测镇江市肺结核流行情况。结论利用该模型对短期内镇江市肺结核发病数进行预测,认为镇江市肺结核流行总体上仍将长期保持下行趋势。 展开更多
关键词 arIMA模型 肺结核 传染病预测 新型冠状病毒感染 镇江
下载PDF
基于ARIMA模型的天津地区单中心HPV感染趋势及基因型特征
14
作者 李杨 谭桂兰 +4 位作者 李怡 谢晓媛 李姝 吴芳 刘霞 《中国感染控制杂志》 CAS CSCD 北大核心 2024年第10期1249-1257,共9页
目的采用自回归移动平均(ARIMA)模型构建时间序列,分析天津地区单中心人乳头瘤病毒(HPV)感染趋势及基因型特征。方法选择2018年1月-2022年12月某院进行HPV检测的7236例女性患者,比较2018-2022年天津地区HPV感染情况及基因型分布。建立AR... 目的采用自回归移动平均(ARIMA)模型构建时间序列,分析天津地区单中心人乳头瘤病毒(HPV)感染趋势及基因型特征。方法选择2018年1月-2022年12月某院进行HPV检测的7236例女性患者,比较2018-2022年天津地区HPV感染情况及基因型分布。建立ARIMA模型时间序列,分析模型拟合。预测2023年HPV感染数,并与实际发生数进行比较,评价模型的预测效果。结果2018-2022年天津地区HPV感染率为14.41%;HPV感染率在31~40岁年龄段最高,感染率为15.47%。阳性标本中HPV单一型别感染比率最高,占比为73.54%(767/1043),以高危型HPV为主。低危型感染占比最高的是HPV-6型,为2.59%,高危型感染占比最高的是HPV-16型,为16.06%。建立ARIMA模型,确定最佳模型为ARIMA(0,1,2)(0,1,1)12,其AIC值和BIC值分别为3.877、4.005,经白噪声检验Ljung-Box Q=8.828差异无统计学意义(P>0.05)。利用模型预测2023年HPV感染数,实际值、预测值的总体趋势基本保持一致,模型RMSE、MAPE、MAE分别为6.289、34.149、4.706,提示模型的预测效果较好。结论天津地区女性人群中,HPV病毒感染类型以单一高危型感染为主,其中HPV-16型感染率最高。天津地区HPV感染存在季节性,ARIMA模型在HPV感染流行趋势的预测中效果较好,适用于短期预测。 展开更多
关键词 自回归移动平均模型 人乳头瘤病毒 基因型分布 感染趋势 HPV
下载PDF
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction 被引量:1
15
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 Stochastic model LS+ar Short-term prediction The earth rotation parameter(ERP) Observation model
下载PDF
Constructing Confidence Regions for Autoregressive-Model Parameters
16
作者 Jan Vrbik 《Applied Mathematics》 2023年第10期704-717,共14页
We discuss formulas and techniques for finding maximum-likelihood estimators of parameters of autoregressive (with particular emphasis on Markov and Yule) models, computing their asymptotic variance-covariance matrix ... We discuss formulas and techniques for finding maximum-likelihood estimators of parameters of autoregressive (with particular emphasis on Markov and Yule) models, computing their asymptotic variance-covariance matrix and displaying the resulting confidence regions;Monte Carlo simulation is then used to establish the accuracy of the corresponding level of confidence. The results indicate that a direct application of the Central Limit Theorem yields errors too large to be acceptable;instead, we recommend using a technique based directly on the natural logarithm of the likelihood function, verifying its substantially higher accuracy. Our study is then extended to the case of estimating only a subset of a model’s parameters, when the remaining ones (called nuisance) are of no interest to us. 展开更多
关键词 MarKOV Yule and autoregressive models Maximum Likelihood Function Asymptotic Variance-Covariance Matrix Confidence Intervals Nuisance Parameters
下载PDF
Trend Autoregressive Model Exact Run Length Evaluation on a Two-Sided Extended EWMA Chart
17
作者 Kotchaporn Karoon Yupaporn Areepong Saowanit Sukparungsee 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1143-1160,共18页
The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the a... The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method. 展开更多
关键词 Average run length explicit formula extended EWMA chart trend autoregressive model
下载PDF
基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型研究 被引量:1
18
作者 程小龙 张斌 +1 位作者 刘相杰 刘陶胜 《人民黄河》 CAS 北大核心 2024年第1期146-150,共5页
为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分... 为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分解为高频随机分量、中频周期分量和低频趋势分量,再分别采用GMDH模型、ARIMA模型对高中频分量、低频分量进行预测,建立基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型。以江西上犹江水电站为例,将该模型预测结果与反向传播(BP)、径向基函数(RBF)、GMDH和CEEMDAN-GMDH模型的预测结果进行对比分析。结果表明:CEEMDAN-GMDH-ARIMA模型的均方根误差(E_(RMS))、平均绝对误差(E_(MA))、相关系数(r)分别为0.048 mm、0.035 mm、0.994,均优于BP、RBF、GMDH、CEEMDAN-GMDH模型,模型预测效果最好,能够很好地体现监测点水平位移变化趋势。 展开更多
关键词 自适应噪声完备集成经验模态分解 数据处理群集法 差分自回归移动平均模型算法 大坝 变形预测 江西上犹江水电站
下载PDF
基于OVMD-TCN-AR的水质预测模型
19
作者 张思萱 康燕 +2 位作者 宋金玲 孙逊 刘晓晴 《环境科学导刊》 2024年第5期61-66,共6页
近年来水质预测成为水环境管理领域的热点问题,但是水环境本身的复杂性和动态性导致水质预测时预测精度低、模型稳定性差。针对这些问题,基于最优变分模态分解(Optimality Variational ModeDecomposition,OVMD)、时间卷积网络(TemporalC... 近年来水质预测成为水环境管理领域的热点问题,但是水环境本身的复杂性和动态性导致水质预测时预测精度低、模型稳定性差。针对这些问题,基于最优变分模态分解(Optimality Variational ModeDecomposition,OVMD)、时间卷积网络(TemporalConvolutionalNetwork,TCN)、自回归模型(Autoregression,AR)提出了一种新的水质预测模型。首先,采用OVMD对原始数据进行分解,得到若干个子序列;然后,将分解的子序列作为TCN模型和AR模型的输入进行水质预测,并将两种模型的预测结果进行叠加重构得到最终预测结果;最后,采用龙华溪监测站的总磷数据进行实验验证。结果表明,OVMD-TCN-AR水质预测模型明显优于长短时记忆网络(Long Short Term Memory networks,LSTM)和长短期时间序列网络(Long-and Short-term Time-series network, LSTNet),OVMD-TCN-AR水质预测模型的平均绝对误差为0.00660,均方根误差为0.01166,MAPE为0.0494,拟合度为0.97,说明OVMD-TCN-AR水质预测模型具有较高的可靠性和应用价值。 展开更多
关键词 水质 预测 最优变分模态分解 时间卷积网络 自回归模型
下载PDF
基于ARMAV模型和J-散度的结构损伤识别
20
作者 李孟 郭惠勇 《振动与冲击》 EI CSCD 北大核心 2024年第1期123-130,152,共9页
损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对... 损伤识别技术是结构健康监测系统的关键组成部分,为了进一步提高损伤识别的准确性和适用性,提出一种融合信息距离函数J-散度与向量自回归滑动平均(vector autoregressive moving average,ARMAV)模型的损伤识别方法。采用预白化过滤器对加速度时域数据进行消除激励相关性以及降噪处理;建立了ARMAV模型,并由模型的自回归参数和残差方差构建损伤判别指标;采用三层框架试验数据,并进行转播塔模型的损伤识别试验研究验证了该方法的有效性。结果表明:基于ARMAV模型和J-散度距离的损伤识别方法可操作性强,能够准确、高效地定位框架和塔架结构的损伤,且该方法受环境变化的影响较小,可为在线结构健康监测提供一种新思路。 展开更多
关键词 损伤识别 试验研究 向量自回归滑动平均(arMAV)模型 J-散度 时间序列分析
下载PDF
上一页 1 2 194 下一页 到第
使用帮助 返回顶部