Cu films with thickness of 630-1300nm were deposited on glass substrates without heating by DC magnetron sputtering in pure Ar gas. Ar pressure was controlled to 0.5, 1.0 and 1.5Pa respectively. The target voltage was...Cu films with thickness of 630-1300nm were deposited on glass substrates without heating by DC magnetron sputtering in pure Ar gas. Ar pressure was controlled to 0.5, 1.0 and 1.5Pa respectively. The target voltage was fixed at 500V but the target current increased from 200 to 1150mA with Ar pressure increasing. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used to observe the structural characterization of the films. The resistivity of the films was measured using four-point probe technique. At all the Ar pressures, the Cu films have mixture crystalline orientations of [111], [200] and [220] in the direction of the film growth. The film deposited at lower pressure shows more [111] orientation while that deposited at higher pressure has more [220] orientation. The amount of larger grains in the film prepared at 0.5Pa Ar pressure is slightly less than that prepared at 1.0Pa and 1.5Pa Ar pressures. The resistivities of the films prepared at three different Ar pressures represent few differences, about 3-4 times of that of bulk material. Besides the deposition rate increases with Ar pressure because of the increase in target current. The contribution of the bombardment of energetic reflected Argon atoms to these phenomena is discussed.展开更多
Transparent conducting oxide film of molybdenum-doped zinc oxide (MZO) with high transparency and relatively low resistivity was prepared by RF (radio frequency) magnetron sputtering at room temperature. The struc...Transparent conducting oxide film of molybdenum-doped zinc oxide (MZO) with high transparency and relatively low resistivity was prepared by RF (radio frequency) magnetron sputtering at room temperature. The structural, electrical, and optical properties of the films deposited under different Ar pressure were investigated.XRD (X-ray diffraction) patterns show that the nature of the films is polycrystalline with a hexagonal structure and a preferred orientation along the c-axis. The resistivity increases as Ar pressure increases. The lowest range exceeds 88% for all the samples. The optical band gap decreases from 3.27 to 3.15 eV with increasing Ar pressure from 0.6 to 3.0 Pa.展开更多
The zirconia containing 12wt%Y2O3 thin films deposited by r.f. magnetron sputtering at 25℃ or 400℃, and then bombarded with Ar+ beam at room temperature were characterized with XRD before and after Ar+ bombardment. ...The zirconia containing 12wt%Y2O3 thin films deposited by r.f. magnetron sputtering at 25℃ or 400℃, and then bombarded with Ar+ beam at room temperature were characterized with XRD before and after Ar+ bombardment. It is found that a series of phases formation and transformation happened, among them the most important event is that T’ phase appeared after Ar+ irradiation and the content of the T’ phase increased with the increase of Ar+ ion doses from 5 ×1015 to 6×1016 ions cm-2.展开更多
CdS films prepared with chemical pyrolysis deposition (CPD) at differ- ent temperature during film growth were characterized by XRD. Hexagon-like struc- ture appeared at the temperature of 350-500℃, while wurtzite ph...CdS films prepared with chemical pyrolysis deposition (CPD) at differ- ent temperature during film growth were characterized by XRD. Hexagon-like struc- ture appeared at the temperature of 350-500℃, while wurtzite phase was observed at temperature of 540℃ during film growth. Also CdS films prepared by CPD at 400℃ were undergone post annealing at different temperature of 200-600℃ or post Ar+ ion irradiation. It is found that wurtzite phase happened when the annealing temperature rose to 600℃. And hexagon-like structure existed at the annealing temperature from 25℃ to near 500℃. Ar+ ion irradiation could not cause phase transformation. but induce some preferred orientations and an increase in grain size for the CdS films.展开更多
Cu/HfOx/n^+Si devices are fabricated to investigate the influence of technological parameters including film thickness and Ar/02 ratio on the resistive switching (RS) characteristics of HfOx films, in terms of swit...Cu/HfOx/n^+Si devices are fabricated to investigate the influence of technological parameters including film thickness and Ar/02 ratio on the resistive switching (RS) characteristics of HfOx films, in terms of switch ratio, endurance properties, retention time and multilevel storage. It is revealed that the RS characteristics show strong dependence on technological parameters mainly by altering the defects (oxygen vacancies) in the film. The sample with thickness of 2Onto and Ar/O2 ratio of 12:3 exhibits the best RS behavior with the potential of multilevel storage. The conduction mechanism of all the films is interpreted based on the filamentary model.展开更多
Polycrystalline silicon (poly-Si) films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of the substrate temp...Polycrystalline silicon (poly-Si) films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of the substrate temperature on deposition rate, crystallinity, grain size and the configuration of H existing in poly-Si film were investigated. The results show that, comparing with H2 dilution, Ar dilution could significantly decrease the concentration of H on the growing surface. When the substrate temperature increased, the deposition rate increased and the concentration of H decreased monotonously, but the crystallinity and the grain size of poly-Si films exhibited sophisticated trends. It is proposed that the crystallinity of the films is determined by a competing balance of the self-diffusion activity of Si atoms and the deposition rate. At substrate temperature of 200℃, the deposited film exhibits the maximum poly-Si volume fraction of 79%. Based on these results, higher substrate temperature is suggested to prepare the poly-Si films with advanced stability and compromised crystallinity at high deposition rate.展开更多
In this paper, polycrystalline silicon films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using SiH4/Ar and SiH4/H2 gaseous mixture. Effects of argon flow rate...In this paper, polycrystalline silicon films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using SiH4/Ar and SiH4/H2 gaseous mixture. Effects of argon flow rate on the deposition efficiency and the film property were investigated by comparing with H2. The results indicated that the deposition rate of using Ar as discharge gas was 1.5-2 times higher than that of using H2, while the preferred orientations and the grain sizes of the films were analogous. Film crystallinity increased with the increase of Ar flow rate. Optimized flow ratio of SiH4 to Ar was obtained as F(SiH4): F(Ar)=10:70 for the highest deposition rate.展开更多
基金The authors would like to thank Prof. Y.B. Wang and Mr. S. Liang of the Department of Material Physics for supporting AFM observations. The authors also would like to thank Ms. J.P. He of the State Key Laboratory for Advanced Metals and Materials for sup
文摘Cu films with thickness of 630-1300nm were deposited on glass substrates without heating by DC magnetron sputtering in pure Ar gas. Ar pressure was controlled to 0.5, 1.0 and 1.5Pa respectively. The target voltage was fixed at 500V but the target current increased from 200 to 1150mA with Ar pressure increasing. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used to observe the structural characterization of the films. The resistivity of the films was measured using four-point probe technique. At all the Ar pressures, the Cu films have mixture crystalline orientations of [111], [200] and [220] in the direction of the film growth. The film deposited at lower pressure shows more [111] orientation while that deposited at higher pressure has more [220] orientation. The amount of larger grains in the film prepared at 0.5Pa Ar pressure is slightly less than that prepared at 1.0Pa and 1.5Pa Ar pressures. The resistivities of the films prepared at three different Ar pressures represent few differences, about 3-4 times of that of bulk material. Besides the deposition rate increases with Ar pressure because of the increase in target current. The contribution of the bombardment of energetic reflected Argon atoms to these phenomena is discussed.
基金supported by the National Key Basic Research and Development Programme of China(No.2001CB610504)the National Natural Science Foundation of China(Grant No.60576039,10374060).
文摘Transparent conducting oxide film of molybdenum-doped zinc oxide (MZO) with high transparency and relatively low resistivity was prepared by RF (radio frequency) magnetron sputtering at room temperature. The structural, electrical, and optical properties of the films deposited under different Ar pressure were investigated.XRD (X-ray diffraction) patterns show that the nature of the films is polycrystalline with a hexagonal structure and a preferred orientation along the c-axis. The resistivity increases as Ar pressure increases. The lowest range exceeds 88% for all the samples. The optical band gap decreases from 3.27 to 3.15 eV with increasing Ar pressure from 0.6 to 3.0 Pa.
文摘The zirconia containing 12wt%Y2O3 thin films deposited by r.f. magnetron sputtering at 25℃ or 400℃, and then bombarded with Ar+ beam at room temperature were characterized with XRD before and after Ar+ bombardment. It is found that a series of phases formation and transformation happened, among them the most important event is that T’ phase appeared after Ar+ irradiation and the content of the T’ phase increased with the increase of Ar+ ion doses from 5 ×1015 to 6×1016 ions cm-2.
基金Partly supported by the Visiting Scholar Funds of The Key Laboratory in University of China
文摘CdS films prepared with chemical pyrolysis deposition (CPD) at differ- ent temperature during film growth were characterized by XRD. Hexagon-like struc- ture appeared at the temperature of 350-500℃, while wurtzite phase was observed at temperature of 540℃ during film growth. Also CdS films prepared by CPD at 400℃ were undergone post annealing at different temperature of 200-600℃ or post Ar+ ion irradiation. It is found that wurtzite phase happened when the annealing temperature rose to 600℃. And hexagon-like structure existed at the annealing temperature from 25℃ to near 500℃. Ar+ ion irradiation could not cause phase transformation. but induce some preferred orientations and an increase in grain size for the CdS films.
基金Supported by the National Natural Science Foundation of China under Grant No 51202196the National Aerospace Science Foundation of China under Grant No 2013ZF53067+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No 2014JQ6204the Fundamental Research Funds for the Central Universities under Grant No 3102014JCQ01032the 111 Project under Grant No B08040
文摘Cu/HfOx/n^+Si devices are fabricated to investigate the influence of technological parameters including film thickness and Ar/02 ratio on the resistive switching (RS) characteristics of HfOx films, in terms of switch ratio, endurance properties, retention time and multilevel storage. It is revealed that the RS characteristics show strong dependence on technological parameters mainly by altering the defects (oxygen vacancies) in the film. The sample with thickness of 2Onto and Ar/O2 ratio of 12:3 exhibits the best RS behavior with the potential of multilevel storage. The conduction mechanism of all the films is interpreted based on the filamentary model.
文摘Polycrystalline silicon (poly-Si) films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of the substrate temperature on deposition rate, crystallinity, grain size and the configuration of H existing in poly-Si film were investigated. The results show that, comparing with H2 dilution, Ar dilution could significantly decrease the concentration of H on the growing surface. When the substrate temperature increased, the deposition rate increased and the concentration of H decreased monotonously, but the crystallinity and the grain size of poly-Si films exhibited sophisticated trends. It is proposed that the crystallinity of the films is determined by a competing balance of the self-diffusion activity of Si atoms and the deposition rate. At substrate temperature of 200℃, the deposited film exhibits the maximum poly-Si volume fraction of 79%. Based on these results, higher substrate temperature is suggested to prepare the poly-Si films with advanced stability and compromised crystallinity at high deposition rate.
文摘In this paper, polycrystalline silicon films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using SiH4/Ar and SiH4/H2 gaseous mixture. Effects of argon flow rate on the deposition efficiency and the film property were investigated by comparing with H2. The results indicated that the deposition rate of using Ar as discharge gas was 1.5-2 times higher than that of using H2, while the preferred orientations and the grain sizes of the films were analogous. Film crystallinity increased with the increase of Ar flow rate. Optimized flow ratio of SiH4 to Ar was obtained as F(SiH4): F(Ar)=10:70 for the highest deposition rate.