This paper addresses the probability of atmospheric refractivity estimation by using field measurements at an array of radio receivers in terms of angle-of-arrival spectrum. Angle-of-arrival spectrum information is si...This paper addresses the probability of atmospheric refractivity estimation by using field measurements at an array of radio receivers in terms of angle-of-arrival spectrum. Angle-of-arrival spectrum information is simulated by the ray optics model and refractivity is expressed in the presence of an ideal tri-linear profile. The estimation of the refractivity is organized as an optimization problem and a genetic Mgorithm is used to search for the optimal solution from various trial refractivity profiles. Theoretical analysis demonstrates the feasibility of this method to retrieve the refractivity parameters. Simulation results indicate that this approach has a fair anti-noise ability and its accuracy performance is mainly dependent on the antenna aperture size and its positions.展开更多
针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方...针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方法首先将待检测距离单元的数据从空域、时域以及空时域进行信号对消处理;然后将处理后的数据矩阵描述为空时自回归(Autoregression,AR)模型并估计模型参数;再通过构造与杂波子空间正交的空间来实现对杂波的抑制,最后通过提取待检测单元的最大多普勒频率来估计风场速度。根据仿真结果显示,该方法有效地实现了地杂波抑制,并且能够精确估计风速。展开更多
The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing acros...The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.展开更多
This paper studies a partially nonstationary vector autoregressive(VAR)model with vector GARCH noises.We study the full rank and the reduced rank quasi-maximum likelihood estimators(QMLE)of parameters in the model.It ...This paper studies a partially nonstationary vector autoregressive(VAR)model with vector GARCH noises.We study the full rank and the reduced rank quasi-maximum likelihood estimators(QMLE)of parameters in the model.It is shown that both QMLE of long-run parameters asymptotically converge to a functional of two correlated vector Brownian motions.Based these,the likelihood ratio(LR)test statistic for cointegration rank is shown to be a functional of the standard Brownian motion and normal vector,asymptotically.As far as we know,our test is new in the literature.The critical values of the LR test are simulated via the Monte Carlo method.The performance of this test in finite samples is examined through Monte Carlo experiments.We apply our approach to an empirical example of three interest rates.展开更多
Suppose that the time series Xt satisfieswhere α0≥δ>0,αi≥0 for i=1,2,…,q;βi,i=1,…,p, are real numbers; p and q are the order of the model. The sequence {ξt};(0,1) and is independent of {hs,s≤t} for fixed ...Suppose that the time series Xt satisfieswhere α0≥δ>0,αi≥0 for i=1,2,…,q;βi,i=1,…,p, are real numbers; p and q are the order of the model. The sequence {ξt};(0,1) and is independent of {hs,s≤t} for fixed t. The above model is usually written as AR(p)-ARCH(q).We consider stationary series AR(p)-ARCH(q) model and assume the stationary field is θ0. We express this statement asH1:α1≥α2…≥αq,β1≥β2≥…≥βp and we consider an order restricted testing problem, which is to testH0:α1=α2=…=αq,β1=β2=…=βpagainst H1-H0. We derive the likelihood ratio (LR) test statistic and its asymptotic distri-展开更多
In this paper, we study a stationary AR(p)-ARCH(q) model with parameter vectors α and β. We propose a method for computing the maximum likelihood estimator (MLE) of parameters under the nonnegative restriction...In this paper, we study a stationary AR(p)-ARCH(q) model with parameter vectors α and β. We propose a method for computing the maximum likelihood estimator (MLE) of parameters under the nonnegative restriction. A similar method is also proposed for the case that the parameters are restricted by a simple order: α1≥α2≥…≥αq and β1≥β2≥…≥βp. The strong consistency of the above two estimators is discussed. Furthermore, we consider the problem of testing homogeneity of parameters against the simple order restriction. We give the likelihood ratio (LR) test statistic for the testing problem and derive its asymptotic null distribution.展开更多
Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and...Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view.展开更多
Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequen...Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequency (IF) estimation will be affected by some factors such as basis functions. Focusing on this problem, the optimal basis function of TVAR model for the IF estimation of the LFM signal is obtained in this paper. Besides the depth and width of notching, the phase properties of notch filter affect the Signal-to-Interference plus-Noise Ratio (SINR) of correlation output to the narrowband jammer suppression in DSSS, in response to the problem the closed solution of correlation output SINR improvement has been derived when a single frequency jammer passes through direct IIR notch filter, and its performance has been compared with those of five coefficient FIR filters. Later, a novel method for LFM jammer suppression based on Fourier basis TVAR model and direct IIR notch filter is proposed. The simulation results show the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 40775023)
文摘This paper addresses the probability of atmospheric refractivity estimation by using field measurements at an array of radio receivers in terms of angle-of-arrival spectrum. Angle-of-arrival spectrum information is simulated by the ray optics model and refractivity is expressed in the presence of an ideal tri-linear profile. The estimation of the refractivity is organized as an optimization problem and a genetic Mgorithm is used to search for the optimal solution from various trial refractivity profiles. Theoretical analysis demonstrates the feasibility of this method to retrieve the refractivity parameters. Simulation results indicate that this approach has a fair anti-noise ability and its accuracy performance is mainly dependent on the antenna aperture size and its positions.
文摘针对半球共形阵体制下进行低空风切变检测时会受到强地杂波信号的干扰,导致风切变信号难以检测的问题,提出了一种基于空时自回归的直接数据域算法(Space-Time Autoregressive Direct Data Domain,D3AR)的低空风切变风速估计方法。该方法首先将待检测距离单元的数据从空域、时域以及空时域进行信号对消处理;然后将处理后的数据矩阵描述为空时自回归(Autoregression,AR)模型并估计模型参数;再通过构造与杂波子空间正交的空间来实现对杂波的抑制,最后通过提取待检测单元的最大多普勒频率来估计风场速度。根据仿真结果显示,该方法有效地实现了地杂波抑制,并且能够精确估计风速。
基金This project is supported by the 10th Five-year Plan Pre-research Project Foundation of China Weapon Industry Company, China(No.42001080701).
文摘The identification of the inter-electrode gap size in the high frequency group pulse micro-electrochemical machining (HGPECM) is mainly discussed. The auto-regressive(AR) model of group pulse current flowing across the cathode and the anode are created under different situations with different processing parameters and inter-electrode gap size. The AR model based on the current signals indicates that the order of the AR model is obviously different relating to the different processing conditions and the inter-electrode gap size; Moreover, it is different about the stability of the dynamic system, i.e. the white noise response of the Green's function of the dynamic system is diverse. In addition, power spectrum method is used in the analysis of the dynamic time series about the current signals with different inter-electrode gap size, the results show that there exists a strongest power spectrum peak, characteristic power spectrum(CPS), to the current signals related to the different inter-electrode gap size in the range of 0~5 kHz. Therefore, the CPS of current signals can implement the identification of the inter-electrode gap.
文摘This paper studies a partially nonstationary vector autoregressive(VAR)model with vector GARCH noises.We study the full rank and the reduced rank quasi-maximum likelihood estimators(QMLE)of parameters in the model.It is shown that both QMLE of long-run parameters asymptotically converge to a functional of two correlated vector Brownian motions.Based these,the likelihood ratio(LR)test statistic for cointegration rank is shown to be a functional of the standard Brownian motion and normal vector,asymptotically.As far as we know,our test is new in the literature.The critical values of the LR test are simulated via the Monte Carlo method.The performance of this test in finite samples is examined through Monte Carlo experiments.We apply our approach to an empirical example of three interest rates.
文摘Suppose that the time series Xt satisfieswhere α0≥δ>0,αi≥0 for i=1,2,…,q;βi,i=1,…,p, are real numbers; p and q are the order of the model. The sequence {ξt};(0,1) and is independent of {hs,s≤t} for fixed t. The above model is usually written as AR(p)-ARCH(q).We consider stationary series AR(p)-ARCH(q) model and assume the stationary field is θ0. We express this statement asH1:α1≥α2…≥αq,β1≥β2≥…≥βp and we consider an order restricted testing problem, which is to testH0:α1=α2=…=αq,β1=β2=…=βpagainst H1-H0. We derive the likelihood ratio (LR) test statistic and its asymptotic distri-
文摘In this paper, we study a stationary AR(p)-ARCH(q) model with parameter vectors α and β. We propose a method for computing the maximum likelihood estimator (MLE) of parameters under the nonnegative restriction. A similar method is also proposed for the case that the parameters are restricted by a simple order: α1≥α2≥…≥αq and β1≥β2≥…≥βp. The strong consistency of the above two estimators is discussed. Furthermore, we consider the problem of testing homogeneity of parameters against the simple order restriction. We give the likelihood ratio (LR) test statistic for the testing problem and derive its asymptotic null distribution.
基金Project(61201381)supported by the National Nature Science Foundation of ChinaProject(YP12JJ202057)supported by the Future Development Foundation of Zhengzhou Information Science and Technology College,China
文摘Compared to the rank reduction estimator (RARE) based on second-order statistics (called SOS-RARE), the RARE employing fourth-order cumulants (referred to as FOC-RARE) is capable of dealing with more sources and mitigating the negative influences of the Gaussian colored noise. However, in the presence of unexpected modeling errors, the resolution behavior of the FOC-RARE also deteriorate significantly as SOS-RARE, even for a known array covariance matrix. For this reason, the angle resolution capability of the FOC-RARE was theoretically analyzed. Firstly, the explicit formula for the mathematical expectation of the FOC-RARE spatial spectrum was derived through the second-order perturbation analysis method. Then, with the assumption that the unexpected modeling errors were drawn from complex circular Gaussian distribution, the theoretical formulas for the angle resolution probability of the FOC-RARE were presented. Numerical experiments validate our analytical results and demonstrate that the FOC-RARE has higher robustness to the unexpected modeling en'ors than that of the SOS-RARE from the resolution point of view.
基金Supported by the Natural Science Foundation of Hebei Province (F2010000442)
文摘Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequency (IF) estimation will be affected by some factors such as basis functions. Focusing on this problem, the optimal basis function of TVAR model for the IF estimation of the LFM signal is obtained in this paper. Besides the depth and width of notching, the phase properties of notch filter affect the Signal-to-Interference plus-Noise Ratio (SINR) of correlation output to the narrowband jammer suppression in DSSS, in response to the problem the closed solution of correlation output SINR improvement has been derived when a single frequency jammer passes through direct IIR notch filter, and its performance has been compared with those of five coefficient FIR filters. Later, a novel method for LFM jammer suppression based on Fourier basis TVAR model and direct IIR notch filter is proposed. The simulation results show the effectiveness of the proposed method.