This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on th...This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3].展开更多
Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-...Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.展开更多
基金Supported by the NSSFC(02BTJ001) Supported by the NSSFC(04BTJ002) Supported by the Grant for Post-Doctorial Fellows in Southeast University
文摘This paper is devoted to a study of geometric properties of AR(q) nonlinear regression models. We present geometric frameworks for regression parameter space and autoregression parameter space respectively based on the weighted inner product by fisher information matrix. Several geometric properties related to statistical curvatures are given for the models. The results of this paper extended the work of Bates & Watts(1980,1988)[1.2] and Seber & Wild (1989)[3].
基金supported by NSFC(10071072) supported by SRFDP(200235090)+1 种基金support by the BK21 Project of the Department of Mathematics,Yonsei Universitythe Interdisciplinary Research Program of KOSEF 1999-2-103-001-5 and com2MaC in POSTECH
文摘Let {Xn,n ≥ 0} be an AR(1) process. Let Q(n) be the rescaled range statistic, or the R/S statistic for {Xn} which is given by (max1≤k≤n(∑j=1^k(Xj - ^-Xn)) - min 1≤k≤n(∑j=1^k( Xj - ^Xn ))) /(n ^-1∑j=1^n(Xj -^-Xn)^2)^1/2 where ^-Xn = n^-1 ∑j=1^nXj. In this paper we show a law of iterated logarithm for rescaled range statistics Q(n) for AR(1) model.