We study the least squares estimation of drift parameters for a class of stochastic differential equations driven by small a-stable noises, observed at n regularly spaced time points ti = i/n, i = 1,...,n on [0, 1]. U...We study the least squares estimation of drift parameters for a class of stochastic differential equations driven by small a-stable noises, observed at n regularly spaced time points ti = i/n, i = 1,...,n on [0, 1]. Under some regularity conditions, we obtain the consistency and the rate of convergence of the least squares estimator (LSE) when a small dispersion parameter ε→0 and n →∞ simultaneously. The asymptotic distribution of the LSE in our setting is shown to be stable, which is completely different from the classical cases where asymptotic distributions are normal.展开更多
We present an approach in which the differential evolution (DE) algorithm is used to address identification problems in chaotic systems with or without delay terms. Unlike existing considerations, the scheme is able...We present an approach in which the differential evolution (DE) algorithm is used to address identification problems in chaotic systems with or without delay terms. Unlike existing considerations, the scheme is able to simultaneously extract (i) the commonly considered parameters, (ii) the delay, and (iii) the initial state. The main goal is to present and verify the robustness against the common white Guassian noise of the DE-based method. Results of the time-delay logistic system, the Mackey Glass system and the Lorenz system are also presented.展开更多
This paper proposes a cross-reference method of nonlinear time series analysis, combining the tasks of dynamical system parameter estimation and noise reduction which were fulfilled separately before. With the positiv...This paper proposes a cross-reference method of nonlinear time series analysis, combining the tasks of dynamical system parameter estimation and noise reduction which were fulfilled separately before. With the positive interaction between the two processing modules, the method is somewhat superior. Some prior works can be viewed as special cases of this general framework and effective new algorithms may be devised according to it. Two examples of chaotic time series analysis are also given to show the applicability of the proposed method.展开更多
In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation f...In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation for the cross-correlation functions and cross-power spectra between the outputs under the assumption of white-noise excitation. It widens the field of modal analysis under ambient excitation because many classical methods by impulse response functions or frequency response functions can be used easily for modal analysis under unknown excitation. The Polyreference Complex Exponential method and Eigensystem Realization Algorithm using cross-correlation functions in time domain and Orthogonal Polynomial method using cross-power spectra in frequency domain are applied to a steel frame to extract modal parameters under operational conditions. The modal properties of the steel frame from these three methods are compared with those from frequency response functions analysis. The results show that the modal analysis method using cross-correlation functions or cross-power spectra presented in this paper can extract modal parameters efficiently under unknown excitation.展开更多
A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online....A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online. For the existing IMM filtering theory, the matrix Q is determined by means of design experience, but Q is actually changed with the state of the maneuvering target. Meanwhile it is severely influenced by the environment around the target, i.e., it is a variable of time. Therefore, the experiential covariance Q can not represent the influence of state noise in the maneuvering process exactly. Firstly, it is assumed that the evolved state and the initial conditions of the system can be modeled by using Gaussian distribution, although the dynamic system is of a nonlinear measurement equation, and furthermore the EM algorithm based on IMM filtering with the Q identification online is proposed. Secondly, the truncated error analysis is performed. Finally, the Monte Carlo simulation results are given to show that the proposed algorithm outperforms the existing algorithms and the tracking precision for the maneuvering targets is improved efficiently.展开更多
In this paper, an optimal criterion is presented for adaptive Kalman filter in a control system with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function....In this paper, an optimal criterion is presented for adaptive Kalman filter in a control system with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.展开更多
An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local stati...An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local statistics from an observed degraded image,and the parameters are used to define the constraints on the noise detection process.In addition,an adaptive low-pass filter having a variable filter window defined by the constraints on noise detection is used to control the degree of smoothness of the reconstructed image.Experimental results demonstrate the capability of the proposed algorithm.展开更多
We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a ...We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a two-step least squares approach to estimate the autoregressive parameters directly and then further give the estimate of the signal parameters. This method overcomes the difficulty that the autoregressive noise remains unknown in other methods. It can effectively separate the noise and extract the true signal. The algorithm is linear. The solution of the problem is computationally cheap and practical with high accuracy.展开更多
基金supported by FAU Start-up funding at the C. E. Schmidt Collegeof Science
文摘We study the least squares estimation of drift parameters for a class of stochastic differential equations driven by small a-stable noises, observed at n regularly spaced time points ti = i/n, i = 1,...,n on [0, 1]. Under some regularity conditions, we obtain the consistency and the rate of convergence of the least squares estimator (LSE) when a small dispersion parameter ε→0 and n →∞ simultaneously. The asymptotic distribution of the LSE in our setting is shown to be stable, which is completely different from the classical cases where asymptotic distributions are normal.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60976039)
文摘We present an approach in which the differential evolution (DE) algorithm is used to address identification problems in chaotic systems with or without delay terms. Unlike existing considerations, the scheme is able to simultaneously extract (i) the commonly considered parameters, (ii) the delay, and (iii) the initial state. The main goal is to present and verify the robustness against the common white Guassian noise of the DE-based method. Results of the time-delay logistic system, the Mackey Glass system and the Lorenz system are also presented.
基金Supported by National Science Key Foundation of China
文摘This paper proposes a cross-reference method of nonlinear time series analysis, combining the tasks of dynamical system parameter estimation and noise reduction which were fulfilled separately before. With the positive interaction between the two processing modules, the method is somewhat superior. Some prior works can be viewed as special cases of this general framework and effective new algorithms may be devised according to it. Two examples of chaotic time series analysis are also given to show the applicability of the proposed method.
基金Item of the 9-th F ive Plan of the Aeronautical Industrial Corporation
文摘In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation for the cross-correlation functions and cross-power spectra between the outputs under the assumption of white-noise excitation. It widens the field of modal analysis under ambient excitation because many classical methods by impulse response functions or frequency response functions can be used easily for modal analysis under unknown excitation. The Polyreference Complex Exponential method and Eigensystem Realization Algorithm using cross-correlation functions in time domain and Orthogonal Polynomial method using cross-power spectra in frequency domain are applied to a steel frame to extract modal parameters under operational conditions. The modal properties of the steel frame from these three methods are compared with those from frequency response functions analysis. The results show that the modal analysis method using cross-correlation functions or cross-power spectra presented in this paper can extract modal parameters efficiently under unknown excitation.
基金Supported by the National Key Fundamental Research & Development Programs of P. R. China (2001CB309403)
文摘A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online. For the existing IMM filtering theory, the matrix Q is determined by means of design experience, but Q is actually changed with the state of the maneuvering target. Meanwhile it is severely influenced by the environment around the target, i.e., it is a variable of time. Therefore, the experiential covariance Q can not represent the influence of state noise in the maneuvering process exactly. Firstly, it is assumed that the evolved state and the initial conditions of the system can be modeled by using Gaussian distribution, although the dynamic system is of a nonlinear measurement equation, and furthermore the EM algorithm based on IMM filtering with the Q identification online is proposed. Secondly, the truncated error analysis is performed. Finally, the Monte Carlo simulation results are given to show that the proposed algorithm outperforms the existing algorithms and the tracking precision for the maneuvering targets is improved efficiently.
文摘In this paper, an optimal criterion is presented for adaptive Kalman filter in a control system with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.
基金National Research Foundation of Korea(No.2012M3C4A7032182)
文摘An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local statistics from an observed degraded image,and the parameters are used to define the constraints on the noise detection process.In addition,an adaptive low-pass filter having a variable filter window defined by the constraints on noise detection is used to control the degree of smoothness of the reconstructed image.Experimental results demonstrate the capability of the proposed algorithm.
文摘We focus on a type of combined signals whose forms remain invariant under the autoregressive operators. To extract the true signal from the autoregressive noise, we develop a strategy to separate parameters and use a two-step least squares approach to estimate the autoregressive parameters directly and then further give the estimate of the signal parameters. This method overcomes the difficulty that the autoregressive noise remains unknown in other methods. It can effectively separate the noise and extract the true signal. The algorithm is linear. The solution of the problem is computationally cheap and practical with high accuracy.