针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使...针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。展开更多
为了节省360°全景视频的编码时间,对通用视频编码标准中的编码单元划分决策过程进行了研究,提出了一种面向360°全景视频的帧内预测编码的快速算法。通过优化编码树单元(Coding Tree Unit,CTU)的编码深度范围和编码单元的划分...为了节省360°全景视频的编码时间,对通用视频编码标准中的编码单元划分决策过程进行了研究,提出了一种面向360°全景视频的帧内预测编码的快速算法。通过优化编码树单元(Coding Tree Unit,CTU)的编码深度范围和编码单元的划分模式的选择过程,减少编码时间。实验结果表明,在全帧内模式下,所提算法比原始算法平均可以节省34.33%的时间复杂度,同时带来的BDBR平均增量仅为1.665%,BDPSNR的平均降低量仅为0.076 dB。展开更多
为在外形尺寸与码盘刻线数的双重限制下提升小型光电编码器的精度与分辨率,提出了一种基于坐标旋转计算法(Coordinate Rotation Digital Computer,CORDIC)的编码器细分方法。对现阶段众多电子学细分方法优缺点进行剖析,在细分原理的基...为在外形尺寸与码盘刻线数的双重限制下提升小型光电编码器的精度与分辨率,提出了一种基于坐标旋转计算法(Coordinate Rotation Digital Computer,CORDIC)的编码器细分方法。对现阶段众多电子学细分方法优缺点进行剖析,在细分原理的基础上分析误差产生原因,运用改进型CORDIC算法对运动不满一周期内的信号进行高精度细分处理。实验结果表明,相较于其他方法,最大最小峰谷差值分别减少了60″、20″、10″,均方根误差分别下降了77.1%、59.2%、36.4%,实现了高精度化和小型化。展开更多
在很多实际应用问题中,不确定性的存在对于优化问题的最优解的性能会产生影响。在求解不确定环境下的优化问题时,往往需要考虑解的鲁棒性。最优解的鲁棒性定义通常要考虑其局部邻域内所有解的表现。在多目标优化背景下,如何逼近鲁棒最...在很多实际应用问题中,不确定性的存在对于优化问题的最优解的性能会产生影响。在求解不确定环境下的优化问题时,往往需要考虑解的鲁棒性。最优解的鲁棒性定义通常要考虑其局部邻域内所有解的表现。在多目标优化背景下,如何逼近鲁棒最优帕累托前沿也是一件非常有挑战性的工作。已有的鲁棒多目标进化算法能够比较好地处理低维鲁棒多目标优化问题,即问题的决策变量维数不超过10,但对于高维鲁棒多目标优化问题的表现往往不好。提出了一种结合自编码器以及协同进化方法的多目标进化算法(Decomposition-based Multiobjective Evolutionary Algorithm Assisted by Autoencoder and Cooperative Coevolution,MOEA/D-AECC),用来解决可降维的高维鲁棒多目标优化问题。该算法利用两个不同种群分别优化原始多目标优化问题以及对应的鲁棒多目标优化问题。为提高算法处理高维问题的能力,该算法利用自编码器模型对高维数据进行降维,从而提取出高维数据的低维特征。通过重构这些低维特征来学习可靠的下降方向,之后沿着可靠的下降方向采样产生新解。最后,通过实验测试了MOEA/D-AECC算法在一组可降维的高维鲁棒多目标优化问题上的表现。实验结果表明,MOEA/D-AECC算法的寻优显著优于其他几种代表性的鲁棒多目标进化算法。展开更多
文摘针对神经网络超参数优化效果差、容易陷入次优解和优化效率低的问题,提出一种基于改进实数编码遗传算法(IRCGA)的深度神经网络超参数优化算法——IRCGA-DNN(IRCGA for Deep Neural Network)。首先,采用实数编码方式表示超参数的取值,使超参数的搜索空间更灵活;然后,引入分层比例选择算子增加解集多样性;最后,分别设计了改进的单点交叉和变异算子,以更全面地探索超参数空间,提高优化算法的效率和质量。基于两个仿真数据集,验证IRCGA-DNN的毁伤效果预测性能和收敛效率。实验结果表明,在两个数据集上,与GA-DNN(Genetic Algorithm for Deep Neural Network)相比,所提算法的收敛迭代次数分别减少了8.7%和13.6%,均方误差(MSE)相差不大;与IGA-DNN(Improved GA-DNN)相比,IRCGA-DNN的收敛迭代次数分别减少了22.2%和13.6%。实验结果表明,所提算法收敛速度和预测性能均更优,能有效处理神经网络超参数优化问题。
文摘为了节省360°全景视频的编码时间,对通用视频编码标准中的编码单元划分决策过程进行了研究,提出了一种面向360°全景视频的帧内预测编码的快速算法。通过优化编码树单元(Coding Tree Unit,CTU)的编码深度范围和编码单元的划分模式的选择过程,减少编码时间。实验结果表明,在全帧内模式下,所提算法比原始算法平均可以节省34.33%的时间复杂度,同时带来的BDBR平均增量仅为1.665%,BDPSNR的平均降低量仅为0.076 dB。
文摘为在外形尺寸与码盘刻线数的双重限制下提升小型光电编码器的精度与分辨率,提出了一种基于坐标旋转计算法(Coordinate Rotation Digital Computer,CORDIC)的编码器细分方法。对现阶段众多电子学细分方法优缺点进行剖析,在细分原理的基础上分析误差产生原因,运用改进型CORDIC算法对运动不满一周期内的信号进行高精度细分处理。实验结果表明,相较于其他方法,最大最小峰谷差值分别减少了60″、20″、10″,均方根误差分别下降了77.1%、59.2%、36.4%,实现了高精度化和小型化。
文摘在很多实际应用问题中,不确定性的存在对于优化问题的最优解的性能会产生影响。在求解不确定环境下的优化问题时,往往需要考虑解的鲁棒性。最优解的鲁棒性定义通常要考虑其局部邻域内所有解的表现。在多目标优化背景下,如何逼近鲁棒最优帕累托前沿也是一件非常有挑战性的工作。已有的鲁棒多目标进化算法能够比较好地处理低维鲁棒多目标优化问题,即问题的决策变量维数不超过10,但对于高维鲁棒多目标优化问题的表现往往不好。提出了一种结合自编码器以及协同进化方法的多目标进化算法(Decomposition-based Multiobjective Evolutionary Algorithm Assisted by Autoencoder and Cooperative Coevolution,MOEA/D-AECC),用来解决可降维的高维鲁棒多目标优化问题。该算法利用两个不同种群分别优化原始多目标优化问题以及对应的鲁棒多目标优化问题。为提高算法处理高维问题的能力,该算法利用自编码器模型对高维数据进行降维,从而提取出高维数据的低维特征。通过重构这些低维特征来学习可靠的下降方向,之后沿着可靠的下降方向采样产生新解。最后,通过实验测试了MOEA/D-AECC算法在一组可降维的高维鲁棒多目标优化问题上的表现。实验结果表明,MOEA/D-AECC算法的寻优显著优于其他几种代表性的鲁棒多目标进化算法。