Auxin signaling plays a significant role in the whole process of plant growth and development from embryogenesis to senescence.Auxin response factors(ARFs) are reported to regulate the expression of auxin response gen...Auxin signaling plays a significant role in the whole process of plant growth and development from embryogenesis to senescence.Auxin response factors(ARFs) are reported to regulate the expression of auxin response genes by binding to auxin response elements.ARF is the most critical transcription factor family which has been released in most species,but few reports in strawberry.In this study,the structure characterization of 12 FvARF genes in strawberry,their expression patterns at different development stages,different organizations,and different indole-3-acetic acid(IAA) treatments were analyzed.The expression of 12 FvARFs was found in all experiment tissues and showed almost the same trend during fruit development.All FvARFs respond to the treatment of IAA.Our study provides comprehensive information on ARF family in strawberry,including gene structures,chromosome locations,phylogenetic relationships and expression patterns.The information on FvARF genes paves the way for future research on strawberry ARF genes.展开更多
Light is an environmental signaling,whereas Aux/IAA proteins and Auxin Response Factors(ARFs)are regulators of auxin signalling.Aux/IAA proteins are unstable,and their degradation dependents on 26S ubiquitin-proteasom...Light is an environmental signaling,whereas Aux/IAA proteins and Auxin Response Factors(ARFs)are regulators of auxin signalling.Aux/IAA proteins are unstable,and their degradation dependents on 26S ubiquitin-proteasome and is promoted by Auxin.Auxin binds directly to a SCF-type ubiquitin-protein ligase,TIR1,facilitates the interaction between Aux/IAA proteins and TIR1,and then the degradation of Aux/IAA proteins.A few studies have reported that some ARFs are also unstable proteins,and their degradation is also mediated by 26S proteasome.In this study,by using of antibodies recognizing endogenous ARF7 proteins,we found that protein stability of ARF7 was affected by light.By expressing MYC tagged ARF activators in protoplasts,we found that degradation of ARF7 was inhibited by 26 proteasome inhibitors.In addition,at least ARF5 and ARF19 were also unstable proteins,and degradation of ARF5 via 26S proteasome was further confirmed by using stable transformed plants overexpressing ARF5 with a GUS tag.展开更多
Auxin signaling plays a key role in the regulation of various growth and developmental processes in higher plants. Auxin response factors (ARFs) are transcription factors that regulate the expression of auxin-response...Auxin signaling plays a key role in the regulation of various growth and developmental processes in higher plants. Auxin response factors (ARFs) are transcription factors that regulate the expression of auxin-response genes. The osarf24-1 mutant contains a truncation of domain IV in the C-terminal dimerization domain of a rice ARF protein, OsARF24. This mutant showed auxin-deficient phenotypes and reduced sensitivity to auxin. However, OsARF24 protein contains an SPL-rich repression domain in its middle region and acts as a transcriptional repressor. These results imply that the C-terminal dimerization domain, especially the C-terminal half of domain IV, is essential for the proper regulation of OsARF24 function as a transcriptional repressor in rice.展开更多
基金financially supported by the National Natural Science Foundation of China(31872069)the Natural Science Foundation of Liaoning Province,China(201602659)+1 种基金the Liaoning BaiQianWan Talents Program,China(2016921067)the Program for Excellent Talents in University of Liaoning Province,China(LJQ2014069)
文摘Auxin signaling plays a significant role in the whole process of plant growth and development from embryogenesis to senescence.Auxin response factors(ARFs) are reported to regulate the expression of auxin response genes by binding to auxin response elements.ARF is the most critical transcription factor family which has been released in most species,but few reports in strawberry.In this study,the structure characterization of 12 FvARF genes in strawberry,their expression patterns at different development stages,different organizations,and different indole-3-acetic acid(IAA) treatments were analyzed.The expression of 12 FvARFs was found in all experiment tissues and showed almost the same trend during fruit development.All FvARFs respond to the treatment of IAA.Our study provides comprehensive information on ARF family in strawberry,including gene structures,chromosome locations,phylogenetic relationships and expression patterns.The information on FvARF genes paves the way for future research on strawberry ARF genes.
文摘Light is an environmental signaling,whereas Aux/IAA proteins and Auxin Response Factors(ARFs)are regulators of auxin signalling.Aux/IAA proteins are unstable,and their degradation dependents on 26S ubiquitin-proteasome and is promoted by Auxin.Auxin binds directly to a SCF-type ubiquitin-protein ligase,TIR1,facilitates the interaction between Aux/IAA proteins and TIR1,and then the degradation of Aux/IAA proteins.A few studies have reported that some ARFs are also unstable proteins,and their degradation is also mediated by 26S proteasome.In this study,by using of antibodies recognizing endogenous ARF7 proteins,we found that protein stability of ARF7 was affected by light.By expressing MYC tagged ARF activators in protoplasts,we found that degradation of ARF7 was inhibited by 26 proteasome inhibitors.In addition,at least ARF5 and ARF19 were also unstable proteins,and degradation of ARF5 via 26S proteasome was further confirmed by using stable transformed plants overexpressing ARF5 with a GUS tag.
文摘Auxin signaling plays a key role in the regulation of various growth and developmental processes in higher plants. Auxin response factors (ARFs) are transcription factors that regulate the expression of auxin-response genes. The osarf24-1 mutant contains a truncation of domain IV in the C-terminal dimerization domain of a rice ARF protein, OsARF24. This mutant showed auxin-deficient phenotypes and reduced sensitivity to auxin. However, OsARF24 protein contains an SPL-rich repression domain in its middle region and acts as a transcriptional repressor. These results imply that the C-terminal dimerization domain, especially the C-terminal half of domain IV, is essential for the proper regulation of OsARF24 function as a transcriptional repressor in rice.